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CIC Interpolator

Interpolate signal using CIC filter

Libraries:
¥ ceta “=p  DSP HDL Toolbox / Filtering

x[ni2]
CIC Interpolator  valid [
Latency = -

valid ready

Description

The CIC Interpolator block interpolates an input signal by using a cascaded integrator-comb (CIC)
interpolation filter. CIC interpolation filters are a class of linear phase finite impulse response (FIR)
filters consisting of a comb part and an integrator part. The CIC interpolation filter structure consists
of N sections of cascaded comb filters, a rate change factor of R, and N sections of cascaded
integrators. For more information about CIC interpolation filters, see “Algorithms” on page 1-7.

The block supports these combinations of input and output data.

* Scalar input and scalar output — Support for fixed and variable interpolation rates
* Scalar input and vector output — Support for fixed interpolation rates only
* Vector input and vector output — Support for fixed interpolation rates only

The block provides an architecture suitable for HDL code generation and hardware deployment.

Ports
Input

data — Input data
scalar | column vector

Input data, specified as a scalar or a column vector with a length from 1 to 64.

The input data must be a signed integer or signed fixed point with a word length less than or equal to
32.

Data Types: int8 | intl6 | int32 | signed fixed point
Complex Number Support: Yes

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.

Data Types: Boolean

R — Variable interpolation rate
scalar
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Use this port to dynamically specify the variable interpolation rate during run time.
This value must have the data type fixdt(0,12,0) and must be an integer in the range from 1 to

the Interpolation factor (Rmax) parameter value.

Dependencies

To enable this port, on the Main tab, set the Interpolation factor source parameter to Input
port.

Data Types: fixdt(0,12,0)

reset — Clears internal states
scalar

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select the Enable reset input port parameter.

Data Types: Boolean
Output

data — CIC-interpolated output data
scalar | column vector

CIC-interpolated output data, returned as a scalar or a column vector with a length from 1 to 64. You
can define the data type of this output by setting the Output data type parameter on the Data
Types tab.

Data Types: int8 | intl6 | int32 | signed fixed point
Complex Number Support: Yes

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.

Data Types: Boolean

ready — Indicates block is ready for new input data
scalar

Control signal that indicates that the block is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the block ignores any input data in the next time step.

Data Types: Boolean
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Parameters

Main

Interpolation factor source — Source of interpolation factor
Property (default) | Input port

Select whether the block operates with a fixed or variable interpolation rate.

* Property — Use a fixed interpolation rate specified from the Interpolation factor (R)
parameter.

* Input port — Use a variable interpolation rate specified from the R input port.

Note The block does not support variable interpolation for these two combinations of input and
output:

* Scalar input and vector output
* Vector input and vector output

Interpolation factor (R) — Interpolation factor
2 (default) | integer from 1 to 2048

Specify the interpolation factor rate at which the block interpolates the input. This value must be an
integer. The range of available values depends on the type of input and output data.

Input Data Output Data Interpolation factor (R) Valid Values
Scalar Scalar Integer from 1 to 2048

Scalar Vector Integer from 1 to 64

Vector Vector Integer from 1 to 64

1-4

Note For vector inputs, select the interpolation factor rate and input vector length such that their
multiplication value does not exceed 64.

Dependencies

To enable this parameter, set the Interpolation factor source parameter to Property.
Interpolation factor (Rmax) — Upper bound of variable interpolation factor

2 (default) | integer from 1 to 2048

Specify the upper bound of the range of valid values for the R input port.

Note The block does not support variable interpolation for these two combinations of input and
output:
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* Scalar input and vector output
* Vector input and vector output

Dependencies

To enable this parameter, set the Interpolation factor source parameter to Input port.
Differential delay (M) — Differential delay

1 (default) | 2

Specify the differential delay of the comb part of the block.

Number of sections (N) — Number of integrator and comb sections

2 (default) |1|3]4]5]|6

Specify the number of sections in either the comb part or the integrator part of the block.

Minimum number of cycles between valid input samples — Minimum number of cycles between
valid input samples

1 (default) | factors or multiples of R

Specify the minimum number of cycles between the valid input samples as 1, factors of R, or
multiples of R based on the type of input and output data, where R is the interpolation factor.

Input Data Output Data Minimum Number of Cycles Between
Valid Input Samples

Scalar Scalar greater than or equal to R

Scalar Vector factors less than R

Vector Vector 1

Dependencies

To enable this parameter, set the Interpolation factor source parameter to Property.
Gain correction — Output gain compensation

off (default) | on

Select this parameter to compensate for the output gain of the block.

The latency of the block changes depending on the type of input, the interpolation you specify, the
number of sections, and the value of this parameter. For more information on the latency of the block,
see “Latency” on page 1-10.

Data Types

Output data type — Data type of output

Full precision (default) | Same word length as input |Minimum section word lengths
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Select the data type for the output data.

* Full precision — The output data type has a word length equal to the input word length plus
gain bits.

* Same word length as input — The output data type has a word length equal to the input
word length.

* Minimum section word lengths — The output data type uses the word length you specify in
the Output word length parameter.

Output word length — Word length of output

16 (default) | integer from 2 to 104

Specify the word length of the output as an integer from 2 to 104.

Dependencies

To enable this parameter, set the Qutput data type parameter to Minimum section word
lengths.

Control Ports

Enable reset input port — Option to enable reset input port

off (default) | on

Select this parameter to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

For more reset considerations, see “Tips” on page 1-6.

Use HDL global reset — Option to connect data path registers to generated HDL global reset signal

off (default) | on

Select this parameter to connect the generated HDL global reset signal to the data path registers.
This parameter does not change the appearance of the block or modify simulation behavior in
Simulink®. When you clear this parameter, the generated HDL global reset clears only the control
path registers. The generated HDL global reset can be synchronous or asynchronous depending on
the HDL Code Generation > Global Settings > Reset type parameter in the model Configuration
Parameters.

For more reset considerations, see “Tips” on page 1-6.

Tips
Reset Behavior

* By default, the CIC Interpolator block connects the generated HDL global reset to only the control
path registers. The two reset parameters, Enable reset input port and Use HDL global reset,
connect a reset signal to the data path registers. Because of the additional routing and loading on
the reset signal, resetting data path registers can reduce synthesis performance.

* The Enable reset input port parameter enables the reset port on the block. The reset signal
implements a local synchronous reset of the data path registers. For optimal use of FPGA
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resources, this option does not connect the reset signal to registers targeted to the DSP blocks of
the FPGA.

* The Use HDL global reset parameter connects the generated HDL global reset signal to the data
path registers. This parameter does not change the appearance of the block or modify simulation
behavior in Simulink. The generated HDL global reset can be synchronous or asynchronous
depending on the HDL Code Generation > Global Settings > Reset type parameter in the
model Configuration Parameters. Depending on your device, using the global reset might move
registers out of the DSP blocks and increase resource use.

*  When you select the Enable reset input port and Use HDL global reset parameters together,
the global and local reset signals clear the control and data path registers.

Reset Considerations for Generated Test Benches

* FPGA-in-the-loop (FIL) initialization provides a global reset but does not automatically provide a
local reset. With the default reset parameters, the data path registers that are not reset can result
in FIL mismatches if you run the FIL model more than once without resetting the board. Select
Use HDL global reset to reset the data path registers automatically, or select Enable reset
input port and assert the local reset in your model so the reset signal becomes part of the
Simulink FIL test bench.

» The generated HDL test bench provides a global reset but does not automatically provide a local
reset. With the default reset parameters and the default register reset Configuration Parameters,
the generated HDL code includes an initial simulation value for the data path registers. However,
if you are concerned about X-propagation in your design, you can set the HDL Code Generation
> Global Settings > Coding style > No-reset register initialization parameter in
Configuration Parameters to Do not initialize. In this case, with the default block reset
parameters, the data path registers that are not reset can cause X-propagation on the data path at
the start of HDL simulation. Select Use HDL global reset to reset the data path registers
automatically, or select Enable reset input port and assert the local reset in your model so the
reset signal becomes part of the generated HDL test bench.

Algorithms

CIC Interpolation Filter

The transfer function of a CIC interpolation filter is
RML Y -z BN RN

-k = =
(1-z"hHY 1 (1-271

§ = HeN@) - HN(2).

* Hcis the transfer function of the comb part of the CIC filter.
* His the transfer function of the integrator part of the CIC filter.

* N is the number of sections in either the comb part or integrator part of the filter. This value does
not represent the total number of sections throughout the entire filter.

* Ris the interpolation factor.
* M is the differential delay.
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CIC Filter Structure

The CIC Interpolator block has the CIC filter structure shown in this figure. The structure consists of
N sections of cascaded comb filters, a rate change factor of R, and N sections of cascaded integrators

[1].

& B8
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You can locate the unit delay in the integrator part of the CIC filter in either the feedforward or
feedback path. These two configurations yield an identical filter frequency response. However, the
numerical outputs from these two configurations are different due to the latency of the block.
Because this configuration is preferred for HDL implementation, this block puts the unit delay in the
feedforward path of the integrator.

Fixed and Variable Interpolation

The block upsamples the comb stage output using R, either using the fixed interpolation rate
provided using the Interpolation factor (R) parameter or the variable interpolation rate provided
using the R input port. At the upsampling stage, the block uses a counter to count the valid input
samples, which depend on the interpolation rate. Whenever the interpolation rate changes, the block
resets and starts a new calculation from the next sample. This mechanism prevents the block from
accumulating false values. Then, the block provides the interpolated output to the integrator part of
the CIC filter.

Gain Correction

The gain of the CIC interpolation filter at each stage is given by

2 i=1,2,..,N
Gi=1{,2N-i i— N .
b2 l(ﬁM)l i=N+1,.,2N

* G, is the gain at ith stage.

* Ris the Interpolation factor (R) parameter value.
* M is the Differential delay (M) parameter value.

* N is the Number of sections (N) parameter value.

The output of the block is amplified by a specific gain value. This gain equals the gain of the 2Nth

. . o R xMmN

stage of the CIC interpolation filter and is given by Gain = —R

The block implements gain correction in two parts: coarse gain and fine gain. In coarse gain
correction, the block calculates the shift value, adds the shift value to the fractional bits to create a
numeric type, and performs a bit-shift left and reinterpretcast. In fine gain correction, the block
divides the remaining gain with the coarse gain if the gain is not a power of 2. Then, the block
multiplies the corrected coarse gain value by the inverse value of the fine gain. Before the block
starts processing, all possible shift and fine gain values are precalculated and stored in an array.
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You can modify this equation to Gain = pcGain y fGain. In this equation, cGain is the coarse gain and
fGain is the fine gain. These gains are given by these equations.

* c¢Gain = floor(logyGain)
fGain = Gain/ZCG“i” = Gain x 2~¢cGain

To perform gain correction when the Interpolation factor source parameter is set to Input port,
the block sets the output data type configured with the maximum interpolation rate and bit-shifts left
for all of the values under the maximum interpolation rate. The bit-shift value is equal to

Maximum gain - logy(current gain).

Output Data Type

The block outputs data based on the output data type selection. Consider a block with R, M, and N
values of 8, 1, and 3, respectively, and an input width of 16. The word length at the ith internal stage
is calculated as B; = Byy + [logy(G;)], where:

* G, is the gain at ith stage.
* By, is the input word length.
* B;is the word length at ith stage.

The output word length is calculated as Boy: = B, + N — 1, where Bg,; is the output word length.
When you set the Output data type parameter to Full precision, the block outputs data with a

word length of 22 by adding 6 gain bits to the input word length of 16. The word lengths of the
internal comb and integrator stages are set to accommodate the bit growth.

A
0 — CC—{CHIR I I | i
16 \_/ 22
17 18 18 18 20

22

When you set the Output data type parameter to Same word length as input, the block
outputs data with a word length of 16, which is the same length as the input word length. The word
lengths of the internal comb and integrator stages are set in the same way as in Full precision
mode.

o~ _

@ — C = C —{C R} —{ |

16 k\ﬂ/ 16
17 18 18 18 20

22

When you set the Output data type parameter to Minimum section word lengths and the
Output word length parameter to 16, the block outputs data with a word length of 16. The word
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lengths of the internal comb and integrator stages are set in the same way as in Full precision

mode.

M—C—CH—C I =1 | b
16 16
17 18 18 18 20 22

Latency

The latency of the block changes depending on the type of input, the interpolation you specify, the
number of sections, the value of the Gain correction parameter, and the value of the Minimum
number of cycles between valid input samples parameter. This table shows the latency of the
block. N is the number of sections, vecLen is the length of the vector, and R is the interpolation factor.

Common latency is equal to 2 + (N x (vecLen x R)) + 3 x N, when R is equal to 1 and is equal to 3 +
(N x (vecLen x R)) + 3 x N, when R is greater than 1.

Scalar Scalar Fixed off NumCycle |3 + N.
s =Rand
>R 2+ N, whenR = 1.
on NumCycle |3 + N + 9.
s =Rand
>R 2+N+9, whenR =1.
Scalar Scalar Variable off NA 34+ N+ 2xRyu
2+ N, when R, = 1.
on NA 2+ N+2xR,+ 9.
2+ N+9, when R, = 1.
Scalar Vector Fixed off NumCycle |Common latency + 1, when R is greater than N.
s=1

Common latency, when R is less than or equal to N.

Common latency - (1 + floor(N/(3 x R))), when R is
less than N and (vecLen == 2 && (R == 2 && (N
==4||N==5]||N==06)) || (R==3 && N == 6)).

1-10
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Input Output |Interpolat |Gain Minimum |Latency in Clock Cycles
Data Data ion Type |Correctio |number
n of cycles
between
valid
input
samples
(NumCyc
les)
NumCycle|]3+ N+ (R+1)xN+2)+1+(N-1)x
s<R NumCycles.
on NumCycle |Common latency + 1 + 9, when R is greater than N.
s=1
Common latency + 9, when R is less than or equal to
N.
Common latency - (1 + floor(N/(3 x R))) + 9, when R
is less than N and (vecLen == 2 && (R == 2 && (N
==4||[N==5||N==06)) || (R==3 && N == 06)).
NumCycle|3+ N+ (R+1)xN+2)+1+(N-1)x
s<R NumCycles + 9 .
Vector Vector Fixed off NumCycle |Common latency
s=1
Common latency - 1, when (vecLen == 2 && (R ==
2&& (N==4||N = 5||N—= 6)) || R==3 && N
= 06)) || (vecLen == 3 && (R == 2 && N == 06)).
Common latency - (N >1) + (N > 4)), when R =1
and vecLen ==
Common latency - ((N > (vecLen - 1)), when R =1
and vecLen > 2.
on NumCycle |Common latency + 9.
s=1

Common latency - 1 + 9, when (vecL =2 && (R
&& N == 6)) || (vecLen == 3 && (R == &&N==

6)).

Common latency -
1 and vecLen ==

((N>1)+(N>4)+9, whenR =

Common latency - ((N > (vecLen - 1)) + 9, when R
=1 and vecLen > 2.

Note The block does not support variable interpolation for these two combinations of input and

output:

* Scalar input and vector output

1-11
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* Vector input and vector output

Scalar Input

This section shows the output of the block for a scalar input with different R, M, and N values.

This figure shows the output of the block with the default configuration (that is, with a fixed

interpolation rate and R, M, and N values of 2, 1, and 2, respectively). The latency of the block is 5
clock cycles and is calculated as 3 + N, where N is the number of sections.

Clock I I e I O A

Input Signals
> data

— valid
Ouiput Signals
P-data

—  walid
—  ready

Cursor 1
Cursor2| 500s

This figure shows the output of the block with a fixed interpolation rate, R, M, and N values of 8, 1,
and 3, respectively, and the Gain correction parameter selected. The latency of the block is 15 clock
cycles and is calculated as 3 + N + 9, where N is the number of sections.

¥ Input Signals
»data

—  valid

¥ Output Signals
»data

— valid

Clock N e D I 0

—  ready

Cursor 1 S
Cursor 2| 15.00 s

This figure shows the output of the block with variable interpolation rate (R input port) values of 2, 4,
and 8 and with M and N values of 1 and 3, respectively. In this case, the Gain correction parameter
is cleared. The block accepts R port value changes only when the valid input port is 1. The latency of

the block is 22 clock cycles and is calculated as 3 + N + 2 x R,,,,» where N is the number of sections
and R, is the maximum interpolation factor.

1-12
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Vector Input
This section shows the output of the block for a vector input with different R, M, and N values.

This figure shows the output of the block for a two-element column vector input with the default
configuration (that is, with a fixed interpolation rate and R, M, and N values of 2, 1, and 2,
respectively). The latency of the block is 17 clock cycles.

Clock
¥ Input Signals
»-data
valid
¥ Quiput Signals
»data o012 0000
valid 1

e 10s T 20_1 .
{17.00 s}——
17.00 s

This figure shows the output of the block for an eight-element column vector input with a fixed
interpolation rate, R, M, and N values of 8, 1, and 3, respectively, and the Gain correction
parameter selected. The latency of the block is 213 clock cycles.

Output Signals
»data
wvalid

Cursor 2

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. It also
varies based on the input data type.

This table shows the resource and performance data synthesis results of the block for a scalar input
with fixed and variable interpolation rates and for a two-element column vector of type
fixdt(1,16,0) with a fixed interpolation rate when R, M, and N are 2, 1, and 2, respectively. The
generated HDL code is targeted to the Xilinx® Zynq®- 7000 ZC706 Evaluation Board.
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Input Data Interpolation Type |Slice LUTs Slice Registers Maximum Frequency in
MHz
Scalar Fixed rate 68 90 844.12
Variable rate 143 115 451.83
Vector Fixed rate 480 921 376.51

1-14

The resources and frequencies vary based on the type of input data, R, M, and N values, and other
parameter values selected in the block mask. Using a vector input can increase the throughput,
however, doing so also increases the number of hardware resources that the block uses.

Version History
Introduced in R2022a

References

[1] Hogenauer, E. “An Economical Class of Digital Filters for Decimation and Interpolation.” IEEE
Transactions on Acoustics, Speech, and Signal Processing 29, no. 2 (April 1981): 155-62.
https://doi.org/10.1109/TASSP.1981.1163535.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder™ provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).
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OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also

Objects

dsphdl.CICInterpolator | dsphdl.CICDecimator

Blocks
CIC Decimator
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CIC Decimator

Decimate signal using CIC filter

Libraries:
3 data wep  DSP HDL Toolbox / Filtering
CIC Bgz:rilnl'namr
Latency = -
2 valid valid
Description

The CIC Decimator block decimates an input signal by using a cascaded integrator-comb (CIC)
decimation filter. CIC decimation filters are a class of linear phase finite impulse response (FIR) filters
consisting of a comb part and an integrator part. The CIC decimation filter structure consists of N
sections of cascaded integrators, a rate change factor of R, and N sections of cascaded comb filters.
For more information about CIC decimation filters, see “Algorithms” on page 1-20.

The block supports these combinations of input and output data.

* Scalar input and scalar output — Support for fixed and variable decimation rates
* Vector input and scalar output — Support for fixed decimation rates only
* Vector input and vector output — Support for fixed decimation rates only

The block provides an architecture suitable for HDL code generation and hardware deployment.

Ports
Input

data — Input data
scalar | column vector

Input data, specified as a scalar or a column vector with a length from 1 to 64. The input data must
be a signed integer or a signed fixed point with a word length less than or equal to 32. The
Decimation factor (R) parameter must be an integer multiple of the input frame size.

Data Types: int8 | intl6 | int32 | signed fixed point
Complex Number Support: Yes

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.

Data Types: Boolean

R — Variable decimation rate
scalar
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Use this port to dynamically specify the variable decimation rate during run time.

This value must have the data type fixdt(0,12,0) and it must be an integer in the range from 1 to
the Decimation factor (Rmax) parameter value.

Dependencies

To enable this port, on the Main tab, set the Decimation factor source parameter to Input port.
Data Types: fixdt(0,12,0)

reset — Clears internal states
scalar

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select the Enable reset input port parameter.

Data Types: Boolean
Output

data — CIC-decimated output data
scalar | column vector

The block returns filtered output data as a scalar or a column vector with a length from 1 to 64. You
can define the data type of this output by setting the Output data type parameter on the Data
Types tab.

Data Types: int8 | intl6 | int32 | signed fixed point
Complex Number Support: Yes

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.

Data Types: Boolean

Parameters

Main

Decimation factor source — Source of decimation factor

Property (default) | Input port

Select whether the block operates with a fixed or variable decimation rate.

1-17
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* Property — Use a fixed decimation rate specified from the Decimation factor (R) parameter.
* Input port — Use a variable decimation rate specified from the R input port.

Note For vector inputs, the block does not support variable decimation.

Decimation factor (R) — Decimation factor
2 (default) | integer from 1 to 2048

Specify the decimation factor rate at which the block decimates the input.

Dependencies

To enable this parameter, set the Decimation factor source parameter to Property.
Decimation factor (Rmax) — Upper bound of variable decimation factor

2 (default) | integer from 1 to 2048

Specify the upper bound of the range of valid values for the R input port.

Note For vector inputs, the block does not support variable decimation.

Dependencies

To enable this parameter, set the Decimation factor source parameter to Input port.
Differential delay (M) — Differential delay

1 (default) | 2

Specify the differential delay of the comb part of the block.

Number of sections (N) — Number of integrator and comb sections

2 (default) |1|3]4]|5]|6

Specify the number of sections in either the comb part or the integrator part of the block.
Gain correction — Output gain compensation

off (default) | on

Select this parameter to compensate for the output gain of the block.

The latency of the block changes depending on the type of input, the decimation you specify, the

number of sections, and the value of this parameter. For more information on the latency of the block,
see “Latency” on page 1-23.
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Data Types

Output data type — Data type of output

Full precision (default) | Same word length as input |Minimum section word lengths
Select the data type for the output data.

* Full precision — The output data type has a word length equal to the input word length plus
gain bits.

* Same word length as input — The output data type has a word length equal to the input
word length.

* Minimum section word lengths — The output data type uses the word length you specify in
the Output word length parameter. When you select this option, the block applies the pruning
algorithm. For more information about the pruning algorithm, see [1].

Output word length — Word length of output

16 (default) | integer from 2 to 104

Specify the word length of the output.

Note When this value is 2, 3, 4, 5, or 6, the block can overflow the output data.

Dependencies

To enable this parameter, set the Output data type parameter to Minimum section word
lengths.

Control Ports
Enable reset input port — Reset signal
off (default) | on

Select this parameter to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

For more reset considerations, see “Tips” on page 1-20.
Use HDL global reset — Option to connect data path registers to generated HDL global reset signal
off (default) | on

Select this parameter to connect the generated HDL global reset signal to the data path registers.
This parameter does not change the appearance of the block or modify simulation behavior in
Simulink. When you clear this parameter, the generated HDL global reset clears only the control path
registers. The generated HDL global reset can be synchronous or asynchronous depending on the
HDL Code Generation > Global Settings > Reset type parameter in the model Configuration
Parameters.

For more reset considerations, see “Tips” on page 1-20.
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Tips

Reset Behavior

By default, the CIC Decimator block connects the generated HDL global reset to only the control
path registers. The two reset parameters, Enable reset input port and Use HDL global reset,
connect a reset signal to the data path registers. Because of the additional routing and loading on
the reset signal, resetting data path registers can reduce synthesis performance.

The Enable reset input port parameter enables the reset port on the block. The reset signal
implements a local synchronous reset of the data path registers. For optimal use of FPGA
resources, this option does not connect the reset signal to registers targeted to the DSP blocks of
the FPGA.

The Use HDL global reset parameter connects the generated HDL global reset signal to the data
path registers. This parameter does not change the appearance of the block or modify simulation
behavior in Simulink. The generated HDL global reset can be synchronous or asynchronous
depending on the HDL Code Generation > Global Settings > Reset type parameter in the
model Configuration Parameters. Depending on your device, using the global reset might move
registers out of the DSP blocks and increase resource use.

When you select the Enable reset input port and Use HDL global reset parameters together,
the global and local reset signals clear the control and data path registers.

Reset Considerations for Generated Test Benches

FPGA-in-the-loop (FIL) initialization provides a global reset but does not automatically provide a
local reset. With the default reset parameters, the data path registers that are not reset can result
in FIL mismatches if you run the FIL model more than once without resetting the board. Select
Use HDL global reset to reset the data path registers automatically, or select Enable reset
input port and assert the local reset in your model so the reset signal becomes part of the
Simulink FIL test bench.

The generated HDL test bench provides a global reset but does not automatically provide a local
reset. With the default reset parameters and the default register reset Configuration Parameters,
the generated HDL code includes an initial simulation value for the data path registers. However,
if you are concerned about X-propagation in your design, you can set the HDL Code Generation
> Global Settings > Coding style > No-reset register initialization parameter in
Configuration Parameters to Do not initialize. In this case, with the default block reset
parameters, the data path registers that are not reset can cause X-propagation on the data path at
the start of HDL simulation. Select Use HDL global reset to reset the data path registers
automatically, or select Enable reset input port and assert the local reset in your model so the
reset signal becomes part of the generated HDL test bench.

Algorithms

CIC Decimation Filter

The transfer function of a CIC decimation filter is

) N (1 _ Z—RM)N 1 ‘ (1 _ Z—RM)N

A

= HiN(2) - HN(2) .

H; is the transfer function of the integrator part of the CIC filter.
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* Hcis the transfer function of the comb part of the CIC filter.

* N is the number of sections. The number of sections in a CIC filter is defined as the number of
sections in either the comb part or integrator part of the filter. This value does not represent the
total number of sections throughout the entire filter.

* R s the decimation factor.
* M is the differential delay.

CIC Filter Structure

The CIC Decimator block has the CIC filter structure shown in this figure. The structure consists of N
sections of cascaded integrators, a rate change factor of R, and N sections of cascaded comb filters

[1].
R E e

You can locate the unit delay in the integrator part of the CIC filter in either the feedforward or
feedback path. These two configurations yield an identical filter frequency response. However, the
numerical outputs from these two configurations are different due to the latency of the block.
Because this configuration is preferred for HDL implementation, this block puts the unit delay in the
feedforward path of the integrator.

Fixed and Variable Decimation

The block downsamples the integrator stage output using R, either based on the fixed decimation rate
provided using the Decimation factor (R) parameter or the variable decimation rate provided using
the R input port. At the downsampler stage, the block uses a counter to count the valid input
samples, which depend on the decimation rate. Whenever the decimation rate changes, the block
resets and starts a new calculation from the next sample. This mechanism prevents the block from
accumulating false values. Then, the block provides the decimated output to the comb part of the CIC
filter.

Gain Correction

The gain of the block is given by Gain = (R xM )N .

* Risthe Decimation factor (R) parameter value.
* M is the Differential delay (M) parameter value.
* N is the Number of sections (N) parameter value.

The block implements gain correction in two parts: coarse gain and fine gain. In coarse gain
correction, the block calculates the shift value, adds the shift value to the fractional bits to create a
numeric type, and performs a bit-shift left and reinterpretcast. In fine gain correction, the block
divides the remaining gain with the coarse gain if the gain is not a power of 2. Then, the block
multiplies the corrected coarse gain corrected value with the inverse value of the fine gain. Before
the block starts processing, all possible shift and fine gain values are precalculated and stored in an
array.

You can modify this equation as Gain = 2cGain y fGain. In this equation, cGain is the coarse gain, and
fGain is the fine gain. These gains are given by these equations.
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* cGain = floor(log,Gain)
fGain = Gain/2°°™™ = Gain x 27°C4"

To perform gain correction when the Decimation factor source parameter is set to Input port,
the block sets the output data type configured with the maximum decimation rate and bit-shifts left
for all of the values under the maximum decimation rate. The bit-shift value is equal to

Maximum gain — logy(current gain).

Output Data Type

The block outputs data based on the output data type selection. Consider a block with R, M, and N
values of 8, 1, and 3, respectively, and an input width of 16. The output word length is calculated as
Bout = B+ [logy(Gain)l.

Gain = (R xM)N
* By, is the input word length.
*  Bgy is the output word length.

When you set the Output data type parameter to Full precision, the block outputs data with a
word length of 25 by adding 9 gain bits to the input word length of 16.
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When you set the Output data type parameter to Same word length as input, the block
outputs data with a word length of 16, which is the same length as the input word length. The
internal integrator and comb stages use the full-precision data type with 25 bits.
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When you set the Output data type parameter to Minimum section word lengths and the
Output word length parameter to 16, the block outputs data with a word length of 16. In this case,
the block changes the bit width at each stage, based on the pruning algorithm.

If the Output word length parameter value is less than the number of bits required at the block
output, the least significant bits (LSBs) at the earlier stages are pruned. The Hogenauer algorithm [1]
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provides the number of LSBs to discard at each stage. This algorithm minimizes the loss of
information in the output data.

r"ﬂ"ﬁ
1] — | 1 | | [R C(C—{C— i
16 \U/’I 16

Latency

The latency of the block changes depending on the type of input, the decimation you specify, the
number of sections, and the value of the Gain correction parameter. This table shows the latency of
the block. N is the number of sections and vecLen is the length of the vector.

Input Output Decimation |Gain Latency in Clock Cycles
Data Data Type Correction
Scalar Scalar Fixed of f 3+N.WhenR=1,2+N.
on 3+ N+9.WhenR=1,2+N+09.
Scalar Scalar Variable of f 4+ N.WhenR,,,,=1,3+N.
on 44+ N+9 WhenR,,=1,3+N+09.
Vector Scalar Fixed of f floor((vecLen - 1) x (N/vecLen)) + 1 + N + (2 + (vecLen
+1)xN
on floor((vecLen - 1) x (N/vecLen)) + 1 + N + (2 + (vecLen
+1)xN)+9
Vector Vector Fixed off floor((vecLen - 1) x (N/vecLen)) + 1 + N + (2 + (vecLen
+1)xN
on floor((vecLen - 1) x (N/vecLen)) + 1 + N + (2 + (vecLen
+1)xN)+9

Note For vector inputs, the block does not support variable decimation.

Scalar Input
This section shows the output of the block for a scalar input with different R, M, and N values.

This figure shows the output of the block with the default configuration (that is, with a fixed
decimation rate and R, M, and N values of 2, 1, and 2, respectively). The block returns valid output
data at every second cycle based on the fixed Decimation factor (R) parameter value of 2. The
latency of the block is 5 clock cycles and is calculated as 3 + N, where N is the number of sections.
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Clock
¥ input Signals
> data
valid

¥ Output Signals

> data
— valid

Cursor1| 500s

This figure shows the output of the block with a fixed decimation rate, R, M, and N values of 8, 1, and
3, respectively, and the Gain correction parameter selected. The block returns valid output data at
every eighth cycle based on the fixed Decimation factor (R) parameter value of 8. The latency of
the block is 15 clock cycles and is calculated as 3 + N + 9, where N is the number of sections.

Clock
¥ Input Signals
- data
valid
¥ Output Signals
- data
— valid

0s
Cursor 1| 15.00s

This figure shows the output of the block with variable decimation rate (R input port) values of 2, 4,
and 8 and with M and N values of 1 and 3, respectively. In this case, the Gain correction parameter
is cleared. The block returns valid output data at the second, fourth, and eighth cycles corresponding
to the R port values 2, 4, and 8, respectively. The block accepts R port value changes only when the
valid input port is 1. The latency of the block is 7 clock cycles and is calculated as 4 + N, where N is
the number of sections.

Clock
¥ Input Signals
»data
valid
P decimFactor

¥ Ouiput Signals
> data
— valid

Vector Input
This section shows the output of the block for a vector input with different R, M, and N values.

This figure shows the output of the block for a two-element column vector input with the default
configuration, (that is, with a fixed decimation rate and R, M, and N values of 2, 1, and 2,
respectively). The latency of the block is 12 clock cycles.
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Clock
¥ Input Signals
»data
—  wvalid
¥ Output Signals
»-data

—  wvalid

Cursor 1
Cursor 2

This figure shows the output of the block for an eight-element column vector input with a fixed
decimation rate, R, M, and N values of 8, 1, and 3, respectively, and the Gain correction parameter
selected. The latency of the block is 44 clock cycles.

Clock ]
¥ input Signals
»data 353 354 355 356 357 358 359 360 |
valid 1
¥ Output Signals

wdata 0
valid 1

Cursor 1
Cursor 2

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. It also
varies based on the input data type.

This table shows the resource and performance data synthesis results of the block for a scalar input
of type fixdt(1,16,0) with fixed and variable decimation rates and for a two-element column
vector input with a fixed decimation rate when R, M, and N are 2, 1, and 2, respectively. The
generated HDL is targeted to the Xilinx Zyng- 7000 ZC706 Evaluation Board.

Input Data Decimation Type |Slice LUTs Slice Registers Maximum Frequency in
MHz
Scalar Fixed rate 101 166 711.74
Variable rate 206 186 441.70
Vector Fixed rate 218 627 624.61

The resources and frequencies vary based on the type of input data and the values of R, M, and N, as
well as other parameter values selected in the block mask. Using a vector input can increase the
throughput, however, doing so also increases the number of hardware resources that the block uses.

Version History
Introduced in R2019b

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named CIC Decimation HDL Optimized and was included in the DSP
System Toolbox™ DSP System Toolbox HDL Support library.
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R2022a: Changes to decimation factor parameters
Behavior changed in R2022a

You can now set the decimation factor to 1. In previous releases, a decimation factor of 1 was invalid.

Configuration Before R2022a After 2022a

Variable decimation factor Select the Variable decimation |Set the Decimation factor
parameter and set the source parameter to Input
Decimation factor (R) port and set the Decimation
parameter to the maximum factor (Rmax) parameter to
expected decimation factor. the maximum expected

decimation factor. The
decimFactor port is renamed

to R.
Fixed decimation factor Clear the Variable decimation |Set the Decimation factor
parameter and set the source parameter to Property
Decimation factor (R) and set the Decimation factor
parameter to the desired (R) to the desired decimation
decimation factor. factor.

R2021b: High-throughput interface

The block accepts and returns a column vector of elements that represent samples in time. The input
vector can contain up to 64 samples. When you use frame-based input, you must use a fixed
decimation factor.

R2020a: Gain correction and programmable decimation factor

You can optionally enable automatic gain correction. You can also specify the decimation factor as an
input port.

References

[1] Hogenauer, E. “An Economical Class of Digital Filters for Decimation and Interpolation.” IEEE

Transactions on Acoustics, Speech, and Signal Processing 29, no. 2 (April 1981): 155-62.
https://doi.org/10.1109/TASSP.1981.1163535.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.
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HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also

Objects
dsphdl.CICDecimator | dsphdl.CICInterpolator

Blocks
CIC Interpolator
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Discrete FIR Filter

Finite-impulse response filter

Libraries:
9 data data [y DSP HDL Toolbox / Filtering
Discrete FIR Filter
Latency = —
M valid valid [
Description

The Discrete FIR Filter block models finite-impulse response filter architectures optimized for HDL
code generation. The block accepts scalar or frame-based input, supports multichannel input, and
provides an option for programmable coefficients by using a parallel interface or a memory interface.
The block provides a hardware-friendly interface with input and output control signals. To provide a
cycle-accurate simulation of the generated HDL code, the block models architectural latency
including pipeline registers and resource sharing.

The block provides three filter structures.

» The direct form systolic architecture provides a fully parallel implementation that makes efficient
use of Intel® and Xilinx DSP blocks.

* The direct form transposed architecture is a fully parallel implementation and is suitable for FPGA
and ASIC applications.

» The partly serial systolic architecture provides a configurable serial implementation that makes
efficient use of FPGA DSP blocks.

For a filter implementation that matches multipliers, pipeline registers, and pre-adders to the DSP
configuration of your FPGA vendor, specify your target device when you generate HDL code.

All single-channel filter structures remove multipliers for zero-valued coefficients, such as in half-
band filters and Hilbert transforms. When you use scalar input data, all filter structures share
multipliers for symmetric and antisymmetric coefficients. Frame-based filters and multichannel filters
do not implement symmetry optimization, and multichannel filters do not remove multipliers for zero-
valued coefficients. Multichannel filters share resources between channels, even if the filter
coefficients are different across the channels.

The latency between valid input data and the corresponding valid output data depends on the filter
structure, serialization options, number of coefficients, and whether the coefficient values provide
optimization opportunities. For details of structure and latency, see “FIR Filter Architectures for
FPGAs and ASICs”.

Ports
Input

data — Input data
scalar | column vector | row vector
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Input data, specified as a scalar, column vector, or row vector of real or complex values. Use a column
vector to increase throughput by processing samples in parallel. You can use a row vector to
represent multiple channels, or you can provide scalar data with channels interleaved. The channels
can have independent filter coefficients.

The size of the row or column vector must be less than or equal to 64 elements.

When the input data type is an integer type or a fixed-point type, the block uses fixed-point arithmetic
for internal calculations.

The software supports double and single data types for simulation, but not for HDL code
generation.

Data Types: fixed point |single |double|int8 | intl1l6 | int32 | uint8 | uint16 | uint32

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.

Data Types: Boolean

coeff — Filter coefficients (Parallel interface)
real or complex row vector

Filter coefficients, specified as a row vector of real or complex values. You can change the input
coefficients at any time. When you use scalar input data, the size of the coefficient vector depends on
the size and symmetry of the sample coefficients specified in the Coefficients prototype parameter.
The prototype specifies a sample coefficient vector that is representative of the symmetry and zero-
valued locations of the expected input coefficients. The block uses the prototype to optimize the filter
by sharing multipliers for symmetric or antisymmetric coefficients, and by removing multipliers for
zero-valued coefficients. Therefore, provide only the nonduplicate coefficients at the port. For
example, if you set the Coefficients prototype parameter to a symmetric 14-tap filter, the block
expects a vector of 7 values on the coeff input port. You must still provide zeros in the input coeff
vector for the nonduplicate zero-valued coefficients.

When you use frame-based input data, the block does not optimize the filter for coefficient symmetry.
The block still uses the Coefficients prototype to remove multipliers for zero-valued coefficients. At
the coeff input port, specify a vector that is the same size as the prototype.

The software supports double and single data types for simulation, but not for HDL code
generation.

Dependencies
To enable this port, set Coefficients source to Input port (Parallel interface).
Data Types: single | double | int8 | int16 | int32 | uint8 | uintl6 | uint32 | fixed point

coeff — Filter coefficients (Memory interface)
real or complex scalar

Filter coefficients, specified as a real or complex scalar value to write to internal memory. To load a
single coefficient value to internal memory, specify a coeff value with a corresponding address on the
caddr port and an enable signal on the cwren port. You can change the input coefficients at any time.
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While you write new coefficients into memory, the block ignores any input data, but still returns
dataOut with validOut until it clears the filter pipeline. The block resumes accepting input once
cdone is set to 1 (true).

vahid-out

The coefficient memory has the same number of addresses as the size of the Coefficients prototype
parameter. The prototype specifies a sample coefficient vector that is representative of the symmetry
and zero-valued locations of the expected input coefficients. When you use scalar input data, the
block uses the prototype to optimize the filter by sharing multipliers for symmetric or antisymmetric
coefficients, and by removing multipliers for zero-valued coefficients. You must write the entire set of
coefficients to memory, including symmetric or zero-value coefficients. For example, if you set the
Coefficients prototype parameter to a symmetric 14-tap filter, you must write 14 values to the
memory interface.

When you use frame-based input data, the block does not optimize the filter for coefficient symmetry.
The block still uses the Coefficients prototype parameter to remove multipliers for zero-valued
coefficients. The coefficient memory has the same number of locations as the size of the prototype.

The software supports double and single data types for simulation, but not for HDL code
generation.

Dependencies
To enable this port, set Coefficients source to Input port (Memory interface).
Data Types: single | double | int8 | int16 | int32 | uint8 | uintl6 | uint32 | fixed point

caddr — Filter coefficient address (Memory interface)
scalar

Specify the filter coefficient address as a scalar integer value represented as an unsigned fixed-point
type with zero fractional bits. The block derives the size of this integer value, and the size of the
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internal memory, from the number of unique coefficients in the Coefficients prototype parameter
value.

The software supports double and single data types for simulation, but not for HDL code
generation.

Dependencies

To enable this port, set Coefficients source to Input port (Memory interface).
Data Types: fixdt(0,N,0Q)

cwren — Filter coefficients write enable (Memory interface)
scalar

Set this input to 1 (true) to write the value on the coeff port into the caddr location in internal
memory.

Dependencies

To enable this port, set Coefficients source to Input port (Memory interface).
Data Types: Boolean

cdone — Filter coefficient write complete (Memory interface)
scalar

Set this input to 1 (true) to indicate that the current port values write the final coefficient value to
memory.

Dependencies

To enable this port, set Coefficients source to Input port (Memory interface).

Data Types: Boolean

reset — Clears internal states
scalar

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When reset is 0 (false) and the input valid is 1 (true), the
block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.
Dependencies

To enable this port, on the Control Ports tab, select Enable reset input port.

Data Types: Boolean
Output

data — Filtered output data
scalar | column vector | row vector

Filtered output data, returned as a scalar, column vector, or row vector of real or complex values. The
dimensions of the output match the dimensions of the input. When the input data type is a floating-
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point type, the output data inherits the data type of the input data. When the input data type is an
integer type or a fixed-point type, the Output parameter on the Data Types tab controls the output
data type.

Data Types: fixed point | single | double

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.

Data Types: Boolean

ready — Indicates block is ready for new input data
scalar

Control signal that indicates the block is ready for a new input data sample on the next cycle. When
ready is 1 (true), you can specify the data and valid inputs for the next time step. When ready is 0
(false), the block ignores any input data in the next time step.

When using the partly serial architecture, the block processes one sample at a time. If your design
waits for this block to return ready set to 0 (false) before setting the input valid to 0 (false), then
one additional cycle of input data arrives at the port. The block stores this additional data while
processing the current data, and does not set ready to 1 (true) until your model processes the
additional input data.

Dependencies

To enable this port, set Filter structure to Partly serial systolic.

Data Types: Boolean

Parameters
Main
Coefficient source — Source of filter coefficients

Property (default) | Input port (Parallel interface) | Input port (Memory
interface)

You can enter constant filter coefficients as a parameter, provide time-varying filter coefficients by
using a input port, or provide time-varying coefficients by using a memory-style interface.

You cannot use programmable coefficients with multichannel data.
When you select Input port (Parallel interface), the coeff port appears on the block.

When you select Input port (Memory interface), a memory-style interface appears on the
block. This interface includes the coeff, caddr, cwren, and cdone ports.

Selecting Input port (Parallel interface) or Input port (Memory interface) enables
the Coefficients prototype parameter. Specify a prototype to enable the block to optimize the filter
implementation according to the values of the coefficients.
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When you use programmable coefficients with frame-based input, the block does not optimize the
filter for coefficient symmetry. Also, the output after a change of coefficient values might not match
the output in the scalar case exactly. This difference occurs because the subfilter calculations are
performed at different times relative to the input coefficient values, compared with the scalar
implementation.

Dependencies

To use Input port (Parallel interface), set the Filter structure parameter to Direct
form systolicorDirect form transposed.

Coefficients — Discrete FIR filter coefficients

[0.5, 0.5] (default) | row vector | multichannel matrix

Discrete FIR filter coefficients, specified as a row vector of real or complex values. You can specify
multichannel coefficients with a K-by-L matrix of real or complex values, where K is the number of
channels and L is the filter length.

You can also specify the coefficients as a workspace variable or as a call to a filter design function.
When the input data type is a floating-point type, the block casts the coefficients to the same data

type as the input. When the input data type is an integer type or a fixed-point type, you can set the
data type of the coefficients on the Data Types tab.

Example: firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0])

Dependencies
To enable this parameter, set Coefficients source to Property.

Coefficients prototype — Prototype filter coefficients

[ ] (default) | real or complex vector

Prototype filter coefficients, specified as a vector of real or complex values. The prototype specifies a
sample coefficient vector that is representative of the symmetry and zero-valued locations of the
expected input coefficients. If all input coefficient vectors have the same symmetry and zero-valued
coefficient locations, set Coefficients prototype to one of those vectors. The block uses the
prototype to optimize the filter by sharing multipliers for symmetric or antisymmetric coefficients,
and by removing multipliers for zero-valued coefficients.

When you use frame-based input data, the block does not optimize the filter for coefficient symmetry.

The block still uses the Coefficients prototype parameter to remove multipliers for zero-valued
coefficients.

1-33



1 Blocks

1-34

Coefficient Source

Input Size

If No Prototype

Input port (Parallel
interface)

When you use scalar input data,
coefficient optimizations affect
the expected size of the vector
on the coeff port. Provide only
the nonduplicate coefficients at
the port. For example, if you set
the Coefficients prototype
parameter to a symmetric 14-
tap filter, the block shares one
multiplier between each pair of
duplicate coefficients, so the
block expects a vector of 7
values on the coeff port. You
must still provide zeros in the
input coeff vector for the
nonduplicate zero-valued
coefficients.

When you use frame-based
input data, specify a coeff
vector that is the same size as
the prototype.

If your coefficients are unknown
or not expected to share
symmetry or zero-valued
locations, you can set
Coefficients prototype to [].

Input port (Memory
interface)

Write the same number of
coefficient values as the size of
the prototype.

Coefficients prototype cannot
be empty. The block uses the
prototype to determine the size
of the coefficient memory. If
your coefficients are unknown
or not expected to share
symmetry or zero-valued
locations, set Coefficients
prototype to a vector with the
same length as your expected
coefficients, which does not
contain symmetry or zero
values, for example
[1:1:NumCoeffs].

Dependencies

To enable this parameter, set Coefficients source to Input port (Parallel interface) or
Input port (Memory interface).

Filter structure — HDL filter architecture

Direct form systolic (default) | Direct form transposed | Partly serial systolic

Specify the HDL filter architecture as one of these structures:

* Direct form systolic — This architecture provides a fully parallel filter implementation that
makes efficient use of Intel and Xilinx DSP blocks. For architecture details, see “Fully Parallel
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Systolic Architecture”. When you specify multichannel coefficients with this architecture, the
block interleaves the channel coefficients over a single parallel filter.

* Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications. For architecture details, see “Fully Parallel Transposed
Architecture”. When you specify multichannel coefficients with this architecture, the block
interleaves the channel coefficients over a single parallel filter.

* Partly serial systolic — This architecture provides a serial filter implementation and
options for tradeoffs between throughput and resource utilization. The architecture makes
efficient use of Intel and Xilinx DSP blocks. The block implements a serial L-coefficient filter with
M multipliers and requires input samples that are at least N cycles apart, such that L = NxM. You
can specify either M or N. For this implementation, the block provides the output ready port
which indicates when the block is ready for new input data. For architecture details, see “Partly
Serial Systolic Architecture (1 < N < L)” and “Fully Serial Systolic Architecture (N = L)”. You
cannot use frame-based input with the partly serial architecture.

When you specify multichannel coefficients with a serial architecture, you must specify the
serialization factor as the number of cycles between valid input samples. For multichannel input
that is scalar and interleaved over the channels, the block implements a partly serial filter with
L/N multipliers when N < L, and a fully serial filter when N >= L. When your multichannel input
is a 1-by-K vector, where K is the number of channels, the block implements a partly serial filter
with LXK/N multipliers when 2xK <= N < LXK and a fully serial filter when N >= LXK,

All single-channel implementations remove multipliers for zero-valued coefficients. When you use
scalar input data, single-channel implementations share multipliers for symmetric and antisymmetric
coefficients. Frame-based filters do not implement symmetry optimization. Multichannel filters do not
optimize for symmetric or zero-valued coefficients. Multichannel filters share resources between
channels, even if the filter coefficients are different across the channels.

Specify serialization factor as — Rule to define serial implementation

Minimum number of cycles between valid input samples (default) | Maximum number of
multipliers

You can specify the rule that the block uses to serialize the filter as either:

* Minimum number of cycles between valid input samples — Specify a requirement for
input data timing using the Number of cycles parameter.

* Maximum number of multipliers — Specify a requirement for resource usage using the
Number of multipliers parameter. This option is not supported when you have multichannel
coefficients.

For a filter with L coefficients, the block implements a serial filter with not more than M multipliers
and requires input samples that are at least N cycles apart, such that L = NxM. The block might
remove multipliers when it applies coefficient optimizations, so the actual M or N value of the filter
implementation might be lower than the specified value.

For multichannel input that is scalar and interleaved over the channels, the block implements a partly
serial filter with L/N multipliers when N < L, and a fully serial filter when N >= L. When your
multichannel input is a 1-by-K vector, where K is the number of channels, the block implements a
partly serial filter with LxK/N multipliers when 2xK <= N < LXK and a fully serial filter when N >=
LXxK.
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Dependencies

To enable this parameter, set the Filter structure parameter to Partly serial systolic.
Number of cycles — Serialization requirement for input timing

2 (default) | positive integer

Serialization requirement for input timing, specified as a positive integer. This parameter represents
N, the minimum number of cycles between valid input samples. In this case, the block calculates M =
L/N. To implement a fully serial architecture, set Number of cycles to a value greater than the filter
length, L, or to Inf. To implement a fully serial architecture for a multichannel filter with 1-by-K
vector input, set Number of cycles to a value greater than LXK, where K is the number of channels.

The block might remove multipliers when it applies coefficient optimizations, so the actual M and N
values of the filter can be lower than the value you specified.

Dependencies

To enable this parameter, set Filter structure to Partly serial systolic and set Specify
serialization factor as to Minimum number of cycles between valid input samples.

Number of multipliers — Serialization requirement for resource usage
2 (default) | positive integer

Serialization requirement for resource usage, specified as a positive integer. This parameter
represents M, the maximum number of multipliers in the filter implementation. In this case, the block
calculates N = L/M. If the input data is complex, the block allocates floor(M/2) multipliers for the
real part of the filter and floor (M/2) multipliers for the imaginary part of the filter. To implement a
fully serial architecture, set Number of multipliers to 1 for real input with real coefficients, 2 for
complex input and real coefficients or real coefficients with complex input, or 3 for complex input and
complex coefficients.

The block might remove multipliers when it applies coefficient optimizations, so the actual M and N
values of the filter might be lower than the specified value.

Dependencies

To enable this parameter, set the Filter structure to Partly serial systolic, and set Specify
serialization factor as to Maximum number of multipliers.

You cannot use this parameter when you specify multichannel coefficients. Use the Number of
cycles parameter instead.

Data Types

Rounding mode — Rounding mode for type-casting the output

Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Rounding mode for type-casting the output to the data type specified by the Output parameter. When

the input data type is floating point, the block ignores this parameter. For more details, see
“Rounding Modes”.
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Saturate on integer overflow — Overflow handling for type-casting the output
off (default) | on

Overflow handling for type-casting the output to the data type specified by the Output parameter.
When the input data type is floating point, the block ignores this parameter. For more details, see
“Overflow Handling”.

Coefficients — Data type of discrete FIR filter coefficients
Inherit: Same word length as input (default) | <data type expression>

The block casts the filter coefficients to this data type. The quantization rounds to the nearest
representable value and saturates on overflow. When the input data type is floating point, the block
ignores this parameter.

The recommended data type for this parameter is Inherit: Same word length as input.
The block returns a warning or error if:

* The Coefficients data type does not have enough fractional length to represent the coefficients
accurately.

* The Coefficients data type is unsigned and the coefficients include negative values.

Dependencies
To enable this parameter, set Coefficients source to Property.
Output — Data type of filter output

Inherit: Inherit via internal rule (default) | Inherit: Same word length as input |
<data type expression>

The block casts the output of the filter to this data type. The quantization uses the settings of the
Rounding mode and Overflow mode parameters. When the input data type is floating point, the
block ignores this parameter.

The block increases the word length for full precision inside each filter tap and casts the final output
to the specified type. The maximum final internal data type (WF) depends on the input data type (WI),
the coefficient data type (WC), and the number of coefficients (L), and is given by

WF = WI + WC + ceil(log2(L)).

When you specify a fixed set of coefficients, the actual full-precision internal word length is usually
smaller than WF, because the coefficient values limit the potential growth.

When you use programmable coefficients, the block cannot calculate the dynamic range, and the
internal data type is always WF.

Control Ports
Enable reset input port — Option to enable reset input port

off (default) | on
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Select this check box to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Use HDL global reset — Option to connect data path registers to generated HDL global reset signal

off (default) | on

Select this check box to connect the generated HDL global reset signal to the data path registers.
This parameter does not change the appearance of the block or modify simulation behavior in
Simulink. When you clear this check box, the generated HDL global reset clears only the control path
registers. The generated HDL global reset can be synchronous or asynchronous depending on the
HDL Code Generation > Global Settings > Reset type parameter in the model Configuration
Parameters.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.
Algorithms

The filter architectures for the Discrete FIR Filter block are shared with other blocks and described
in detail on the “FIR Filter Architectures for FPGAs and ASICs” page.

This flow chart shows the Discrete FIR Filter block architecture for multichannel coefficients, that is,
when you set the Coefficients parameter to an M-by-L matrix.
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The sections below show the hardware resources and synthesized clock speed for the Discrete FIR
Filter block configured with each filter architecture.

Performance — Fully Parallel Systolic

This table shows post-synthesis resource utilization for the HDL code generated for a symmetric 26-
tap FIR filter with 16-bit scalar input and 16-bit coefficients. The synthesis targets a Xilinx ZC-706
(XC7Z045ffg900-2) FPGA. The Global HDL reset type parameter is Synchronous and Minimize
clock enables is selected. The reset port is not enabled, so only control path registers are connected
to the generated global HDL reset.

Resource Uses
LUT 36
Slice Reg 487
Slice 45
Xilinx LogiCORE DSP48 13

After place and route, the maximum clock frequency of the design is 630 MHz.

Performance — Fully Parallel Transposed

This table shows post-synthesis resource utilization for the HDL code generated for a symmetric 26-

tap FIR filter with 16-bit scalar input and 16-bit coefficients. The synthesis targets a Xilinx ZC-706

(XC7Z045ffg900-2) FPGA. The Global HDL reset type parameter is Synchronous and Minimize
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clock enables is selected. The reset port is not enabled, so only control path registers are connected
to the generated global HDL reset.

Resource Uses
LUT 32
Slice Reg 108
Xilinx LogiCORE DSP48 26

After place and route, the maximum clock frequency of the design is 541 MHz.
Performance — Partly Serial Systolic (1 <N <L)

This table shows post-synthesis resource utilization for the HDL code generated from the “Partly
Serial Systolic FIR Filter Implementation” example. The implementation is for a 32-tap FIR filter with
16-bit scalar input, 16-bit coefficients, and a serialization factor of 8 cycles between valid input
samples. The synthesis targets a Xilinx Virtex-6 (XC6VLX240T-1FF1156) FPGA. The Global HDL
reset type parameter is Synchronous and Minimize clock enables is selected.

Resource Uses
LUT 181
FFS 428
Xilinx LogiCORE DSP48 2

After place and route, the maximum clock frequency of the design is 561 MHz.
Performance — Fully Serial Systolic (N = L)

This table shows post-synthesis resource utilization for the HDL code generated from the 32-tap filter
in the “Partly Serial Systolic FIR Filter Implementation” example, with the Number of cycles
parameter set to Inf. This configuration implements a fully serial filter. The synthesis targets a Xilinx
Virtex-6 (XC6VLX240T-1FF1156) FPGA. The Global HDL reset type parameter is Synchronous and
Minimize clock enables is selected.

Resource Uses
LUT 122
Slice Reg 225
Xilinx LogiCORE DSP48 1
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After place and route, the maximum clock frequency of the design is 590 MHz.

Version History
Introduced in R2017a

R2023a: Load coefficients using memory-style interface
This block offers an optional memory-style interface to load coefficients. To use this interface, set the

Coefficient source parameter to Input port (Memory interface). You can use this interface
with any filter architecture.
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R2023a: Multichannel support

Specify coefficients as an L-by-K matrix, where L is the filter length and K is the number of channels.
You can supply input data as a 1-by-K row-\ vector or as scalar input with the channels interleaved in
time. The filter shares resources between channels, even if the filter coefficients are different across
the channels. If the input data channels have enough cycles between valid input samples, the block
can implement the multichannel filter as a single fully serial FIR filter.

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named Discrete FIR Filter HDL Optimized and was included in the
DSP System Toolbox DSP System Toolbox HDL Support library.

R2022a: High-throughput interface

This block supports high-throughput data. You can apply input data as an N-by-1 vector, where N can
be up to 64 values. You cannot use frame-based input with the partly serial architecture.

R2022a: Input coefficients must be a row vector
Behavior changed in R2022a

When you use programmable coefficients with this block, you must supply the coefficients as a row
vector (1-by-N matrix). Before R2022a, the block accepted a one-dimensional array (for example,
ones(5)), a column vector (M-by-1 matrix), or a row vector of coefficients.

R2022a: RAM-based partly serial architecture

This block uses a RAM-based partly serial architecture, which uses fewer resources than the former
register-based architecture. Uninitialized RAM locations can result in X values at the start of your
HDL simulation. You can avoid X values by having your test initialize the RAM or by enabling the
Initialize all RAM blocks option in the model configuration parameters. This parameter sets the
RAM locations to 0 for simulation and is ignored by synthesis tools.

R2019b: Complex coefficients

The block supports complex-valued coefficients. If both coefficients and input data are complex, the

block implements each filter tap with three multipliers. If either data or coefficients are complex but
not both, the block uses two multipliers for each filter tap. You can use complex coefficients with all

architectures and with programmable coefficients.

R2019a: Programmable coefficients

The block provides the option to specify coefficients using an input port when you select the Direct
form systolic architecture. You cannot use programmable coefficients with transposed or partly
serial systolic architectures.

R2019a: Optimize symmetric coefficients
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The block provides optimization of symmetric and antisymmetric coefficients. This optimization
reduces the number of multipliers and makes efficient use of FPGA DSP resources.

In R2018D, the block performed these optimizations only for fully parallel architectures.

R2019a: Optional reset port

The block provides an optional reset port for any architecture, including a serial systolic architecture
with resource sharing. The reset port provides a local synchronous reset of the data path registers.

In R2018Db, the block supported the reset port only for fully parallel architectures.

R2019a: Changes to serial filter parameters

Behavior changed in R2019a

Before R2019a, you specified the serial implementation by setting a requirement for input timing.
Starting in R2019a, you can specify the serialization requirement based on either input timing or

resource usage.

For a filter with L coefficients, the block implements a serial filter with not more than M multipliers
and requires input samples that are at least N cycles apart, such that L = NxM.

Serial Filter Requirement

Configuration Before R2019a

Configuration in R2019a

Specify a serialization rule
based on input timing, that is, N
cycles.

¢ Set Filter structure to
Direct form systolic.

¢ Select Share DSP
resources.

* Set Sharing factor to N.

Set the Filter structure to
Partly serial
systolic.

Set Specify serialization
factor as to Minimum
number of cycles
between valid input
samples.

Set Number of cycles to N.

Specify a serialization rule
based on resource usage, that
is, M multipliers.

Serialization by resource usage
is not supported before R2019a.
However, you can calculate N
based on your multiplier
requirement.

¢ Set Filter structure to
Direct form systolic.

¢ Select Share DSP
resources.

* Set Sharing factor to
ceil (NumCoeffs/M).

Set the Filter structure to
Partly serial
systolic.

Set Specify serialization
factor as to Maximum
number of multipliers.

Set Number of multipliers
to M.

R2018b: Transposed architecture

The block provides an option to select a direct form transposed architecture.




Discrete FIR Filter

R2018b: Changes to parallel filter architecture
Behavior changed in R2018b

* The validIn port is mandatory. The Enable valid input port parameter is no longer available.

* The ready port is enabled when you select Share DSP resources and disabled when you clear
Share DSP resources. The Enable ready output port parameter is no longer available.

* When you select Direct form systolic without Share DSP resources enabled, the block
implements an improved fully parallel architecture compared to previous releases. This
architecture might have different latency than in previous versions. Use the validOut signal to
align with parallel delay paths. When using this architecture, the default global HDL reset now
clears only the control path registers. Previous releases connected the global HDL reset to the
data path registers and the control path registers. This change improves hardware performance
and lowers the resources used. To implement the same fully parallel architecture as previous
releases, select Share DSP resources and set Sharing factor to 1.

* When you select Direct form systolic, select Share DSP resources, and use any Sharing
factor, the implemented filter has the same latency and uses the same hardware resources as in
previous releases. The reset behavior for this architecture is also the same as in previous releases.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture
You can set block parameters to make tradeoffs between throughput and resource utilization.

» For highest throughput, choose a fully parallel systolic or transposed architecture. The generated
code accepts input data and provides filtered output data on every cycle.

» For reduced area, choose partly serial systolic architecture. Then specify a rule that the block uses
to serialize the filter based on either input timing or resource usage. To specify a serial filter using
an input timing rule, set Specify serialization factor as to Minimum number of cycles
between valid input samples, and set Number of cycles to a value greater than or equal to
2. In this case, the filter accepts only input samples that are at least Number of cycles cycles
apart. To specify a serial filter using a resource rule, set Specify serialization factor as to
Maximum number of multipliers, and set Number of multipliers to a value less than the
number of filter coefficients. In this case, the filter accepts input samples that are at least
NumCoeffs/NumMults apart.
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HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

The Discrete FIR Filter block does not support resource sharing optimization through HDL Coder
settings. Instead, set the Filter structure parameter to Partly serial systolic, and configure
a serialization factor based on either input timing or resource usage.

See Also

Objects
dsphdl.FIRFilter

Blocks
FIR Decimator | FIR Rate Converter | FIR Interpolator

Topics

“FIR Filter Architectures for FPGAs and ASICs”
“High-Throughput HDL Algorithms”

“Hardware Control Signals”
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Farrow Rate Converter

Polynomial sample-rate converter

Libraries:
e sata p DSP HDL Toolbox / Signal Operations

Y valid Farrow Rate Converter valid b

Hrate ready [

Description

The Farrow Rate Converter block converts the sample rate of a signal by using FIR filters to
implement a polynomial sinc approximation. A Farrow filter is an efficient rate converter when the
rate conversion factor is a ratio of large integer decimation and interpolation factors. Specify the rate
conversion factor by providing the input sample rate and the desired output sample rate. You can
provide the rate conversion factor as a fixed parameter or as a time-varying input signal.

You can use this block with the default coefficients for most rate conversions. The default coefficients
are a LaGrange interpolation that matches the Farrow Rate Converter block in DSP System Toolbox.
Or, you can specify a custom set of coefficients if the default does not meet your specifications.

The block provides a hardware-friendly interface with input and output control signals. To provide a
cycle-accurate simulation of the generated HDL code, the block models architectural latency
including pipeline registers and multiplier optimizations.

Ports
Input

data — Input data
real or complex scalar

Input data, specified as a real or complex scalar. When the input data type is an integer type or a
fixed-point type, the block uses fixed-point arithmetic for internal calculations.

The software supports double and single data types for simulation, but not for HDL code
generation.

Data Types: fixed point | single | double |int8 | intl6 | int32 |uint8 | uintl6 |uint32

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.

Data Types: Boolean

rate — Rate change factor
scalar
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Specify the rate change factor as a positive rational value that is the ratio of the input sample rate
and the output sample rate, F;,/F,,:. There are no limits on the rate change factor.

When this input value changes, the block resets the internal phase accumulator. This reset means you
can change the rate change factor from decimation to interpolation. For example, you can use this
block to align data streams that have similar but varying sample clocks.

The block derives the data type of the internal accumulator from the data type of this signal. The data
type of the rate change must have at least one integer bit and one fractional bit. The accumulator
data type is fixdt (1, fractionalWL+1, fractionalWL), where fractionalWL is the fraction length
of the rate change data type. The fractional WL determines the accuracy of the phase timing, but also
increases the critical path. When the rate change word length is large, you can limit hardware
resource use by fitting the multiplicand data type to the DSP blocks on the FPGA. .

Dependencies

To enable this port, set the Rate change source parameter to Input port.
Data Types: fixed point

reset — Clears internal states
scalar

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select Enable reset input port.
Data Types: Boolean

Output

data — Filtered output data
real or complex scalar

Filtered output data, returned as a real or complex scalar. When the input data type is a floating-point
data type, the output data inherits the data type of the input data. When the input data type is an
integer type or a fixed-point type, the Output parameter on the Data Types tab controls the output
data type.

Data Types: fixed point | single | double

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.

Data Types: Boolean
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ready — Indicates block is ready for new input data
scalar

Control signal that indicates that the block is ready for new input data sample on the next cycle.

When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the block ignores any input data in the next time step.

Data Types: Boolean

Parameters

Main

Rate change source — Source of rate change
Property (default) | Input port

You can enter a constant rate change as a parameter or provide a time-varying rate change by using
an input port.

Selecting Input port enables the rate port on the block.

Rate change (fsin/fsout) — Rate change factor

147/160 (default) | positive real scalar

Specify the rate change factor as a ratio of the input sample rate and the output sample rate, F;,/

Fout, Or provide a positive rational value. There are no limits on the rate change factor. Specify the
data type for this value by using the RateChange parameter on the Data Types tab.

Dependencies

To enable this parameter, set Rate change source to Property.

Data Types: double
Coefficients matrix — FIR filter coefficients

[-1/6 1/2 -1/3 0;1/2 -1 -1/2 1;-1/2 1/2 1 0;1/6 O -1/6 0] (default) | matrix of real
values

Specify FIR filter coefficients as an M-by-N matrix of real values, where N is the number of filters and
M is the number of coefficients in each filter. N must be less than six. The block implements a

polynomial of order N - 1. The default value is a special closed-form LaGrange solution that
accomplishes most rate changes.

Data Types: double

Filter structure — HDL filter architecture

Direct form systolic (default) | Direct form transposed

This block implements the FIR filter stages by using the same architectures as the Discrete FIR Filter

block. Specify the HDL filter architecture as one of these structures:
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 Direct form systolic — This architecture provides a fully parallel filter implementation that
makes efficient use of Intel and Xilinx DSP blocks. For architecture details, see “Fully Parallel
Systolic Architecture”.

* Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications. For architecture and performance details, see “Fully Parallel
Transposed Architecture”.

All implementations share multipliers for symmetric and antisymmetric coefficients and remove
multipliers for zero-valued coefficients.

Minimum number of cycles between valid input samples — Serialization requirement for input
timing
1 (default) | positive integer

Serialization requirement for input timing, specified as a positive integer. This parameter represents
N, the minimum number of cycles between valid input samples. To implement a fully serial
architecture, set Minimum number of cycles between valid input samples greater than the filter
length, L, or to Inf.

When this parameter is greater than one, the block implements each FIR subfilter as a partly-serial
architecture that shares the multipliers in time.

Dependencies
To enable this parameter, set Filter structure to Direct form systolic.
Data Types

Rounding mode — Rounding mode for type-casting the output

Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Rounding mode for type-casting the output to the data type specified by the Output parameter. When
the input data type is a floating-point data type, the block ignores this parameter. For more details,
see “Rounding Modes”.

Saturate on integer overflow — Overflow handling for type-casting the output

off (default) | on

Overflow handling for type-casting the output to the data type specified by the Output parameter.
When the input data type is a floating-point data type, the block ignores this parameter. For more
details, see “Overflow Handling”.

Coefficients — Data type of filter coefficients

Inherit: Same word length as input (default) | <data type expression>

The block casts the filter coefficients to this data type. The quantization rounds to the nearest
representable value and saturates on overflow. When the input data type is a floating-point data type,
the block ignores this parameter.

The recommended data type for this parameter is Inherit: Same word length as input. When
selecting this data type, consider the size supported by the DSP blocks on your target FPGA.
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RateChange — Data type of rate change factor

fixdt(1l,16) (default) | <data type expression>

The block casts the Rate change (fsin/fsout) parameter value to this data type and uses this data
type to derive the data type for the internal accumulator. The accumulator data type is

fixdt (1, fractionalWL+1, fractionalWL), where fractional WL is the fraction length of the rate
change data type. The quantization rounds to the nearest representable value and saturates on
overflow. When the input data type is a floating-point data type, the block ignores this parameter.

This data type must have enough integer bits to represent the fsIn/fsQut value. If the data type
specified does not have enough integer bits, the block returns an error. The default setting does not
specify a number of fractional bits, so the block can compute the necessary integer bits. This data
type must have at least one integer bit and one fractional bit. The fractional part of this data type
determines the accuracy of the phase timing, but also increases the critical path. When the rate
change word length is large, you can limit hardware resources by fitting the multiplicand data type to
the DSP blocks on the FPGA.

Dependencies
To enable this parameter, set Rate change source to Property.

Multiplicand — Data type of multiplicand

Inherit: Inherit via internal rule (default) | <data type expression>

The block casts the output of the accumulator to this data type. The quantization rounds to the
nearest representable value and saturates on overflow. When the input data type is a floating-point
data type, the block ignores this parameter. When the rate change word length is large, you can limit
hardware resource use by controlling the multiplicand data type. When selecting this data type,
consider the size supported by the DSP blocks on your target FPGA.

Output — Data type of filter output

Inherit: same as first input (default) | <data type expression>

The block casts the output of each filter stage to this data type. The quantization uses the settings of
the Rounding mode and Overflow mode parameters. When the input data type is a floating-point
data type, the block ignores this parameter.

Control Ports

Enable reset input port — Option to enable reset input port

off (default) | on

Select this check box to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Use HDL global reset — Option to connect data path registers to generated HDL global reset signal

off (default) | on
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Select this check box to connect the generated HDL global reset signal to the data path registers.
This parameter does not change the appearance of the block or modify simulation behavior in
Simulink. When you clear this check box, the generated HDL global reset clears only the control path
registers. The generated HDL global reset can be synchronous or asynchronous depending on the
HDL Code Generation > Global Settings > Reset type parameter in the model Configuration
Parameters.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Algorithms

The Farrow Rate Converter block uses Horner’s rule to compute samples from the polynomial. The
polynomial is implemented with several FIR filters. Each FIR filter is an instance of the Discrete FIR
Filter block. For details of filter architectures and resource optimization, see “FIR Filter Architectures
for FPGAs and ASICs”. When Minimum number of cycles between valid input samples is greater
than one, the block implements each FIR subfilter as a partly-serial architecture that shares the
multipliers in time.

This diagram shows the Farrow architecture for a four-stage filter. There are four FIR filters. The
output of each filter is added to the result of the previous stage, cast to the output data type, then
multiplied by the current value of the accumulator. The accumulator operates on the fractional part of
the rate change, and uses a data type derived from the rate change data type. The accumulator data
type is fixdt (1, fractionalWL+1, fractionalWL), where fractionalWL is the fraction length of
the rate change data type.

input data type

T S

M : = 1
T
I

When you set the coefficient data type to Same as input wordlength, each subfilter computes the
best precision data type based on its coefficients. As a result, each filter can have a different output
data type. To maintain full precision when you set the output data type to Full precision, the
block casts the output of each subfilter to the highest precision data type of all the subfilter data
types.

rate change

The table shows the coefficient data type and output data type for each subfilter when using the
default Farrow coefficients, and an input data type of fixdt(1,18,14).

Coefficient Value

Coefficient Data Type

Subfilter Output Data Type

-1/6 1/2 -1/2 1/6

fixdt(1,18,17)

fixdt(1,36,31)

1/2 -1 1/2 0

fixdt(1,18,17)

fixdt(1,36,31)

-1/3 -1/2 1 -1/6

fixdt(1,18,16)

fixdt(1,35,30)




Farrow Rate Converter

Coefficient Value Coefficient Data Type Subfilter Output Data Type
0100 fixdt(1,18,16) fixdt(1,34,30)

In this case, the full precision data type is fixdt(1,36,31).
Performance

This table shows post-synthesis resource utilization for the HDL code generated for the default
coefficients and rate change settings, with 16-bit input and 16-bit coefficients. The synthesis targets a
Xilinx ZC-706 (XC7Z045ffg900-2) FPGA. The Global HDL reset type parameter is Synchronous
and Minimize clock enables is selected. The reset port is not enabled, so only control path
registers are connected to the generated global HDL reset.

Resource Uses
LUT 394
FF 604
BRAM 0
Xilinx LogiCORE DSP48 13

After place and route, the maximum clock frequency of the design is 495 MHz.

Version History
Introduced in R2022a

R2022b: Partly serial filter architecture
The block now has the Minimum number of cycles between valid input samples parameter to

enable resource sharing with a partly serial systolic architecture. The internal FIR filter for each filter
stage is implemented with a partly serial systolic filter with the sharing factor that you specify.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
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HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays

peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also

Objects

dsphdl.FarrowRateConverter | dsphdl.FIRFilter

Blocks

FIR Rate Converter | Discrete FIR Filter
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NCO

Generate real or complex sinusoidal signals

Libraries:
e - DSP HDL Toolbox / Signal Operations
g DSP HDL Toolbox / Sources
| vabd
Description

The NCO block generates real or complex sinusoidal signals, while providing hardware-friendly
control signals.

A numerically-controlled oscillator (NCO) accumulates a phase increment and uses the quantized
output of the accumulator as the index to a lookup table that contains the sine wave values. The wrap
around of the fixed-point accumulator and quantizer data types provide periodicity of the sine wave,
and quantization reduces the necessary size of the table for a given frequency resolution.

LUT
Phase —————— g .
increment ! . ! 3 sin, cos, or exp
———— Accumulate - i Quantize !T- % e inl
i 1 - - 1 @
hhhhhhhhhhhhhhh 8]
0 address 21

For an example of how to generate a sine wave using the NCO block, see “Generate Sine Wave”. For
more information on configuration and implementation, refer to the “Algorithms” on page 1-60
section.

The block also provides these features:

* Optional frame-based output.

* Alookup table compression option to reduce the lookup table size. This compression results in
less than one LSB loss in precision. See “Lookup Table Compression” on page 1-61 for more
information.

* An optional input port for external dither.
* An optional reset port that resets the phase accumulator to its initial value.
* An optional output port for the current NCO phase.

Ports

Note
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* This block appears in the Sources libraries with Phase increment source parameter set to
Property. The only input port is valid.

* This block appears in the Signal Operations libraries with Phase increment source parameter
set to Input port. This configuration shows the optional input port inc.

This icon shows the optional ports of the NCO block.

) nc sin }

) offset >
Cos

. NGO
)dnhar Latency = 6 }
h
) reset accum prese
3 valia vaiid p
Input

inc — Phase increment
scalar integer

Phase increment, specified as a scalar integer. The block casts this value to match the accumulator
word length.

double and single data types are supported for simulation but not for HDL code generation.

Dependencies

To enable this port, set the Phase increment source parameter to Input port.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
fixdt([],N,0)

offset — Phase offset
scalar integer

Phase offset, specified as a scalar integer.

double and single data types are supported for simulation but not for HDL code generation.

Dependencies

To enable this port, set the Phase offset source parameter to Input port.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fixdt([],N,0)

dither — Dither
integer | column vector of integers

Dither, specified as an integer or a column vector of integers. The length of the vector must equal the
Samples per frame parameter value.

double and single data types are supported for simulation but not for HDL code generation.
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Dependencies

To enable this port, set the Dither source parameter to Input port.
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixdt([],N,0)

valid — Control signal that enables NCO operation
scalar

Control signal that enables NCO operation, specified as a Boolean scalar. When this signal is 1, the
block increments the phase and captures any input values. When this signal is 0, the block holds the
phase accumulator and ignores any input values.

When the Samples per frame parameter is greater than 1, this value enables processing of
Samples per frame samples.

Data Types: Boolean

reset accum — Resets the accumulator
scalar

Control signal that resets the accumulator, specified as a Boolean scalar. When this signal is 1, the
block resets the accumulator to its initial value. This signal does not reset the output samples in the
pipeline.

Dependencies

To enable this port, select the Enable accumulator reset input port parameter.

Data Types: Boolean
Output

sin, cos, exp — Generated waveform
scalar | column vector

Generated waveform, returned as a scalar or as a column vector with length equal to the Samples
per frame parameter value. The output can be a single port that returns sin or cos values, a single
port that returns exp values representing cosine + j*sine, or two ports that return sin and cos
values, respectively.

When all input values are fixed-point type or all input ports are disabled, the block determines the
output type using the Output data type parameter. When any input value is floating-point type, the
block ignores the Output data type parameter. In this case, the block returns the waveform as
floating-point values. Floating-point data types are supported for simulation but not for HDL code
generation.

Dependencies

By default, this output port is a sine wave, sin. The port label and format changes based on the Type
of output signal parameter.

phase — Current phase of NCO
scalar | column vector

Current phase of NCO, returned as a scalar or as a column vector with length equal to the Samples
per frame parameter value. The phase is the output of the quantized accumulator with offset and
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increment applied. If quantization is disabled, this port returns the output of the accumulator with
offset and increment applied. The values are of type fixdt(1,N,Q), where N is the Number of
quantizer accumulator bits parameter value. If quantization is disabled, then N is the
Accumulator Word length parameter value.

If any input value is floating-point type, the block returns the phase as a floating-point value.
Floating-point data types are supported for simulation but not for HDL code generation.

Dependencies

To enable this port, select the Enable phase port parameter.
Data Types: single | double | fixdt(1,N,0Q)

valid — Indicates validity of output data
scalar

Control signal that indicates validity of output data, returned as a Boolean scalar. When output valid
is 1, the values on the sin, cos, exp, and phase ports are valid. When output valid is 0, the values on
the output ports are not valid.

When the Samples per frame parameter is greater than 1, this signal indicates the validity of all
elements in the output vector.

Data Types: Boolean

Parameters

Main

Note This block supports double and single input for simulation but not for HDL code generation.
When all input values are fixed-point type or all input ports are disabled, the block determines the
output type using the Output data type parameter. When any input value is floating-point type, the
block ignores the Output data type parameter. In this case, the block returns the waveform and
optional phase as floating-point values.

To use the Fixed-Point Designer™ data type override feature, you can obtain a double output value
by applying double input data to one of the optional ports.

Phase increment source — Source of phase increment
Input port (default) | Property

You can set the phase increment with an input port or by entering a value for the parameter. If you
select Property, the Phase increment parameter appears for you to enter a value. If you select
Input port, the inc port appears on the block.

Phase increment — Phase increment for generated waveform
100 (default) | integer

Phase increment for the generated the waveform, specified as an integer. The block casts this value
to match the accumulator word length.
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Dependencies

To enable this parameter, set the Phase increment source parameter to Property.
Data Types: single | double | int8 | int16 | int32 | uint8 | uintl6 | uint32 | fixdt([],N,0)

Phase offset source — Source of phase offset

Input port (default) | Property

You can set the phase offset with an input port or by entering a value for the parameter. If you select
Property, the Phase offset parameter appears for you to enter a value. If you select Input port,
the offset port appears on the block.

Phase offset — Phase offset for generated waveform

0 (default) | integer

Phase offset for the generated waveform, specified as an integer.

Dependencies

To enable this parameter, set the Phase offset source parameter to Property.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixdt([],N,0)

Dither source — Source of number of dither bits
Property (default) | Input port | None

You can set the dither from an input port or from a parameter. If you select Property, the Number
of dither bits parameter appears. If you select Input port, a port appears on the block. If you
select None, the block does not add dither.

Number of dither bits — Bits used to express dither

4 (default) | positive integer

Number of dither bits, specified as a positive integer.

Dependencies
To enable this parameter, set the Dither source parameter to Property.

Samples per frame — Vector size for frame-based input and output

1 (default) | positive integer

When you set this value to 1, the block has scalar input and output. When this value is greater than 1,
the dither port expects a column vector of length Samples per frame and the sin, cos, exp, and
phase ports return column vectors of length Samples per frame.

Enable look up table compression method — Compress the lookup table

off (default) | on

By default, the block implements a noncompressed lookup table, and the output of this block matches
the output of the NCO block. When you enable this option, the block implements a compressed
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lookup table. The Sunderland compression method reduces the size of the lookup table, losing less
than one LSB of precision. The spurious free dynamic range (SFDR) is empirically 1-3 dB lower than
the noncompressed case. The hardware savings of the compressed lookup table allow room to
improve performance by increasing the word length of the accumulator and the number of quantize
bits. For detail of the compression method, see “Algorithms” on page 1-60.

Enable accumulator reset input port — Enable reset control signal

off (default) | on

Select this parameter to enable the reset accum port. When reset accum is 1, the block resets the
accumulator to its initial value.

Type of output signal — Format of output waveform

Sine (default) | Cosine | Complex exponential | Sine and cosine

If you select Sine or Cosine, the block shows the applicable port, sin or cos. If you select Complex
exponential, the output is of the form cosine + j*sine and the port is labeled exp. If you select
Sine and cosine, the block shows two ports, sin and cos.

When you set the Type of output signal parameter to Complex exponential or Sine and
cosine, the block implements a 1/8 sine wave lookup table for each of the sine and cosine parts of
the waveform, and uses control logic to select and invert the values to generate both sine and cosine
waveforms. This optimization means that dual output mode uses similar hardware resources
compared to single output mode.

Enable phase port — Output current phase

off (default) | on

Select this parameter to return the current NCO phase on the phase port. The phase is the output of
the quantized accumulator, with offset and increment applied. If quantization is disabled, this port
returns the output of the accumulator, with offset and increment applied.

Data Types
Rounding Mode — Rounding mode for fixed-point operations
Floor (default)

Rounding mode for fixed-point operations. Rounding Mode is a read-only parameter with value
Floor.

Overflow mode — Overflow mode for fixed-point operations
Wrap (default)

Overflow mode for fixed-point operations. Overflow mode is a read-only parameter. Fixed-point
numbers wrap around on overflow.

Accumulator Data Type — Accumulator data type

Binary point scaling (default)
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Accumulator data type description. This parameter is read-only, with value Binary point scaling.
The block defines the fixed-point data type using the Accumulator Signed, Accumulator Word
length, and Accumulator Fraction length parameters.

Accumulator Signed — Signed or unsigned accumulator data format

Signed (default)
This parameter is read-only. All output is signed format.

Accumulator Word length — Accumulator word length

16 (default) | integer
Units are in bits. This value must include the sign bit.

If you clear the Quantize phase parameter, then Accumulator word length determines the LUT
size. For HDL code generation, the LUT size must be between 2 and 2!7 entries. When you select
Enable look up table compression method, this parameter must be an integer in the range [5,21].
When you clear Enable look up table compression method, this parameter must be an integer in
the range [3,19]. For more information on how this parameter affects the LUT size, see the
“Algorithms” on page 1-60 section.

When you select the Quantize phase parameter, there is no limit to the Accumulator word length
parameter value.

Accumulator Fraction length — Accumulator fraction length

0 (default) | integer
This parameter is read-only. The accumulator fraction length is zero bits.

The accumulator operates on integers. If the phase increment is fixdt type with a fractional part,
the block returns an error.

Quantize phase — Quantize accumulated phase

off (default) | on

When you select Quantize phase, the block quantizes the result of the phase accumulator to a fixed
bit-width. The block uses this quantized value to select a waveform value from the lookup table.
Quantizing the output of the phase accumulator enables you to reduce the lookup table size without
lowering the frequency resolution. Select the size of the lookup table by using the Number of
quantizer accumulator bits parameter.

When you clear Quantize phase, the block uses the full accumulator value as the address of the
lookup table.

Number of quantizer accumulator bits — Number of quantizer accumulator bits
12 (default) | integer

Number of quantizer accumulator bits, specified as an integer scalar less than the accumulator word
length. For HDL code generation, this parameter value must result in a LUT size between 2 and 27
entries. When you select Enable look up table compression method, this parameter must be an
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integer in the range [5,21]. When you clear Enable look up table compression method, this
parameter must be an integer in the range [3,19]. For more information on how this parameter
affects the LUT size, see the “Algorithms” on page 1-60 section.

Dependencies
To enable this parameter, select the Quantize phase parameter.

Output Data Type — Output data type

Binary point scaling (default) | double | single

Specify the data type for the sin, cos, and exp ports. This parameter is ignored if any input is of
floating-point type. In that case, the output data type is floating-point.

If you select Binary point scaling, the block defines the fixed-point data type using the Output
Signed, Output Word length, and Output Fraction length parameters.

Output Signed — Signed or unsigned output data format
Signed (default)

This parameter is read-only. All output is signed format.
Output Word length — Output word length

16 (default) | integer

Units are in bits. This value must include the sign bit.
Output Fraction length — Output fraction length

14 (default) | integer

Units are in bits.

Algorithms

The frequency resolution of the sine wave depends on the size of the accumulator. Given a sample
time, T,, and the desired output frequency resolution Af, calculate the necessary accumulator word
length, N.

N = ceil(IOQZ(ﬁ))

For a desired output frequency F,, calculate the phase increment.
phaseincrement = round(FoTSZN )

Quantizing the output of the phase accumulator enables you to reduce the lookup table size without
lowering the frequency resolution. Calculate the quantized word length to achieve a desired spurious
free dynamic range (SFDR).

0= ceil(SFD% - 12)
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Phase offset and dither are optionally added at the accumulator stage. For a desired phase offset (in
radians) of the output waveform, calculate the phase offset value that the block adds in the
accumulator.

oN. desiredphaseoffset

phaseoffset = o

The NCO implementation depends on whether you select Enable look up table compression
method.

Without lookup table compression, the block uses the same quarter-sine lookup table as the NCO
block. The size of the LUT is 292X W bits, where Q is Number of quantizer accumulator bits and
W is Output word length.

M N N r——------- N 2% by-W w
. Sign- i i sin(phase) .
inc —<» Extond —— z71 > ' Quantize ——"—» —~* sinfcos
[} [}
| P 1
Accumulate Lookup Table

M = Phase increment word length

N = Accumulator word length

@ = Number of quantizer accumulator bits
If Quantize phase is not enabled, Q=N.

W = Output word length

offset dither

The block casts the phase increment value to match the accumulator word length.

If you do not enable Quantize phase, then Q = N, where N is Accumulator Word length. Consider
the impact on simulator memory and hardware resources when you select these parameters.

When you set the Type of output signal parameter to Complex exponential or Sine and
cosine, the block implements a 1/8 sine wave lookup table for each of the sine and cosine parts of
the waveform, and uses control logic to select and invert the values to generate both sine and cosine
waveforms. This optimization means that dual output mode uses similar hardware resources
compared to single output mode.

For an example of how to generate a sine wave using the NCO block, see “Generate Sine Wave”.
Lookup Table Compression

When you select lookup table (LUT) compression, the NCO block applies the Sunderland compression
method. Sunderland techniques use trigonometric identities to divide each phase of the quarter sine
wave into three components and express it as:

sin(A + B + C) = sin(A + B)cos(C) + cos(A)cos(B)sin(C) — sin(A)sin(B)sin(C)

If the quarter-sine phase has Q-2 bits, then the phase components A and B have a word length of
LA=LB=ceil((Q-2)/3). Phase component C contains the remaining phase bits. If the phase has 12
bits, then the quarter sine phase has 10 bits, and the components are defined as:

* A, the four most significant bits
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(OsAs%)

* B, the next four bits

(0=B= % X 2"4)
* C, the remaining two least significant bits
0=C=7x278)
Given the relative sizes of A, B, and C, the equation can be approximated by:
sin(A + B + C) = sin(A + B) + cosAsinC
The NCO block implements this equation with one LUT for sin(A + B) and one LUT for cos(A)sin(C).

The second term is a fine correction factor that you can truncate to fewer bits without losing
precision. Therefore, the second LUT returns a four-bit result.

_________ a QURE by W || 24 hy-4 W
M Sign- N N i ': sin(A+B) cosAsinC
ine —» Extond e e L :D.uantize WL. —<» sin/cos

Accumulate Compressed Lookup Table

M = Phase increment word length

N = Accumulator word length

Q = Number of quantizer accumulator bits
If Quantize phase is not enabled, Q=N.

A, B, C=Phase component angles.
LA=LB=ceil ((0-2)/3) bits.

IC= rem(Q-2,ceil ( (0-2)/3) ) bits.
W = Output word length

offset dither

With the default accumulator size of 16 bits, and the default quantized phase width of 12 bits, the
LUTs use 28x16 plus 26x4 bits (4.5 kb). For comparison, a quarter-sine lookup table without
compression uses 219x16 bits (16 kb). The compression approximation is accurate within one LSB,
resulting in an SNR of at least 60 dB on the output. See [1].

When you set the Type of output parameter to Complex exponential or Sine and cosine, the
block implements a compressed lookup table for each of the sine and cosine parts of the waveform.
The hardware resource use is still smaller than dual output mode with an uncompressed table.

Control Signals

The block has two input control signals, reset accum (optional) and valid, and one output control
signal, valid. When reset accum is 1, the block sets the phase accumulator to its initial value. When
the input valid is 1, the block increments the phase and captures any input values. When this signal
is 0, the block holds the phase accumulator and ignores any input values. When the output valid
signal is 1, the values on the other output ports are valid.

Latency

The latency of the NCO block is six cycles.
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Performance

This table shows post-synthesis resource utilization for the HDL code generated for the NCO block in
the “Generate Sine Wave” example. The synthesis targets a Xilinx ZC-706 (XC7Z045ffg900-2) FPGA.

Resource Uses
LUT 744
Slice Reg 156
Xilinx LogiCORE DSP48 0

After place and route, the maximum clock frequency of the design is 477 MHz.

Version History
Introduced in R2013a

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named NCO HDL Optimized and was included in the DSP System
Toolbox DSP System Toolbox HDL Support library.

R2022a: Resource optimization for dual output mode

When you set the Type of output signal parameter to Complex exponential or Sine and
cosine, this block implements a 1/8 sine wave lookup table for each of the sine and cosine parts of
the waveform, and uses control logic to select and invert the values to generate both sine and cosine
waveforms. This optimization means that dual output mode uses hardware resources similar to single
output mode. In previous releases, the block implemented one lookup table for each output
waveform.

R2020a: Valid input port required
Behavior changed in R2020a

In previous releases, the input validIn port was optional. It is now required and renamed valid. If
you are using no other input ports, the block uses the valid signal as an enable signal.

R2020a: Phase quantization for floating-point input
Behavior changed in R2020a

The output waveform returned from floating-point input values has changed. The output waveform
now matches the waveform returned from the same input values specified in fixed-point types.

Before R2020a, when using floating-point input types, the block did not quantize the phase internally.
The block expected floating-point phase increment and phase offset inputs specified in radians. Now,
the block quantizes the phase internally, and you must specify the input phase increment and offset in
terms of the quantized size, for both floating-point and fixed-point input types.

For example, before R2020a, for a floating-point HDL NCO to generate output samples with a desired

output frequency of F; and sample frequency of F,, you had to specify the phase increment as
2n(Fy/F,) and phase offset as /2.
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Starting in R2020a, you must specify the phase increment and phase offset in terms of the quantized
size, N. These input values are the same as the input values you use with fixed-point types. Specify
the phase increment as (F;x2N)/F, and the phase offset as (11/2)x2N/21m, or 2VN/4.

R2020a: LUTRegisterResetType option removed
Behavior changed in R2020a

In previous releases, you could choose from two options for the LUTRegisterResetType parameter
on the HDL Block Properties dialog box. The two options were default and none. Starting in
R2020a, the block ignores the parameter setting and uses none for this parameter value. This option
does not connect a reset signal to the LUT registers. This configuration enables the synthesis tool to
determine whether to implement the lookup tables with LUTs or BRAM.

R2020a: High-throughput interface

You can generate frame-based waveforms from the block. The block returns a vector where each
element represents a sample in time. Set the Samples per frame parameter to the desired output
vector size.

References

[1] Cordesses, L., "Direct Digital Synthesis: A Tool for Periodic Wave Generation (Part 1)." IEEE
Signal Processing Magazine. Volume 21, Issue 4, July 2004, pp. 50-54.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).
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InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

*  When you set Dither source to Property, the block adds random dither every cycle. If you
generate a validation model with these settings, a warning is displayed. Random generation of the
internal dither can cause mismatches between the models. You can increase the error margin for
the validation comparison to account for the difference. You can also disable dither or set Dither
source to Input port to avoid this issue.

* You cannot use the NCO block inside a Resettable Synchronous Subsystem.

See Also

Blocks
NCO

Objects
dsphdl.NCO

Topics

“HDL QAM Transmitter and Receiver” (Communications Toolbox)
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Channel Synthesizer

Combine narrowband signals into multichannel signal

Libraries:
data datap DSP HDL Toolbox / Filtering

Channel Synthesizer
Latency = —

W valid valid [

Description

The Channel Synthesizer block combines narrowband signals into a multi-channel signal using the
polyphase filter bank technique.

The block accepts a real- or complex-valued row-vector input data and control signals, and outputs
synthesized column-vector and a control signal. You can achieve gigasamples-per-second (GSPS)
throughput by using this block. The block implements a polyphase filter, with one subfilter per input
vector element. The block supports HDL code generation and hardware deployment.

Ports
Input

data — Input data
real-valued row vector | complex-valued row vector

Input data, specified as a real- or complex-valued row vector.

The vector length must be a power of 2 and in the range [4, 64].

You can use double and single data types for simulation, but not for HDL code generation.

Data Types: fixed point|single | double |int8 | int1l6 | int32 |uint8 | uintl6 |uint32

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.

Data Types: Boolean

reset — Clears internal states
scalar

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.
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For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select the Enable reset input port parameter.

Data Types: Boolean
Output

data — Synthesized output data
complex-valued column vector

Synthesized output data, returned as a complex-valued column vector.

When the input data type is a floating-point type, the output data inherits the data type of the input
data. When the input data type is an integer type or a fixed-point type, the Output parameter on the
Data Types tab controls the output data type.

The output size is same as the input size and is equal to the number of frequency bands or IFFT
length. The output order is bit natural. The output data type depends on the IFFT bit growth,
required to avoid overflow, and the data type set in the Output parameter.

Data Types: fixed point | single | double

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),

the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.

Data Types: Boolean

Parameters
Main
Filter coefficients — Polyphase filter coefficients

[-0.0329 0.1218 0.3183 0.4829 0.5469 0.4829 0.5469 0.4829 0.3183 0.1218
-0.0329] (default) | complex-valued vector

Polyphase filter coefficients, specified as a vector of numeric values. If the number of coefficients is
not a multiple of the number of frequency bands or the IFFT length, the block pads this vector with
zeros. The default filter specification is a raised-cosine FIR filter, rcosdesign(0.25,2,4, 'sqrt"').
You can specify a vector of coefficients or a call to a filter design function that returns the coefficient
values. By default, the block casts the coefficients to the same word length as the input.

Filter structure — HDL filter architecture
Direct form transposed (default) | Direct form systolic

Specify the HDL filter architecture as one of these values:
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* Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications. For architecture and performance details, see “Fully Parallel
Transposed Architecture”.

* Direct form systolic — This architecture provides a fully parallel filter implementation that
makes efficient use of Intel and Xilinx DSP blocks. For architecture and performance details, see
“Fully Parallel Systolic Architecture”.

Complex multiplication — HDL implementation of complex multipliers
Use 4 multipliers and 2 adders (default) | Use 3 multipliers and 5 adders

Specify the HDL implementation of complex multipliers as either Use 4 multipliers and 2
adders orUse 3 multipliers and 5 adders. The speed of the multipliers depends on your
synthesis tool and target device.

Divide butterfly outputs by two — IFFT scaling

on (default) | of f

When you select this parameter, the IFFT implements an overall 1/N scale factor by scaling the result
of each pipeline stage by 2, where N is the IFFT length. This adjustment keeps the output of the IFFT
in the same amplitude range as its input. If you disable scaling, the IFFT avoids overflow by
increasing the word length by one bit at each stage.

Data Types

Rounding mode — Rounding mode for typecasting output

Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Use fixed-point arithmetic for internal calculations when the input is an integer or fixed-point data
type. This option does not apply when the input is single or double. For more details, see
“Rounding Modes”.

Saturate on integer overflow — Overflow handling for typecasting output

off (default) | on

Use fixed-point arithmetic for internal calculations when the input is an integer or fixed-point data
type. This option does not apply when the input is single or double. Cast the coefficients and

output of the polyphase filter to the data types you specify. For more information, see “Overflow
Handling”.

Coefficients — Data type of the coefficients

Inherit: Same word length as input (default) | <data type expression>

Cast the polyphase filter coefficients to this data type using the rounding and overflow settings you
specify. When you select Inherit: Same word length as input (default), the block selects the

binary point using fixed point best-precision rules.

Output — Data type of block output
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Inherit: via internal rule (default) | Inherit: Same as input | <data type
expression>

When you select Inherit: via internal rule, the block selects a best-precision binary point by
considering filter coefficients values and the input data type range. When you select Inherit: Same
as input, the block casts the output of the polyphase filter to the input data type, using the
rounding and overflow settings you specify.

Control Ports
Enable reset input port — Option to enable reset input port
off (default) | on

Select this parameter to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

Algorithms

The polyphase filter algorithm requires a subfilter for each FFT channel. For more information about
the polyphase filter architecture, see the Channelizer (DSP System Toolbox) block reference page.

— Y(0)

X(0) —

—_—) -_—
N=#0f . * N=#of
channels | . channels

___. ___’
X(N-1) —p —p Y(N-1)

If the FFT length is N, the block implements N subfilters in the hardware. Each subfilter is an FIR
filter direct form transposed or direct form systolic with Numc,.4/N taps. The block casts the output
of the subfilters to the specified Qutput data type by using the rounding and overflow settings you
select and then pipelines filter tap in the subfilter to target the DSP sections of an FPGA.

Latency

The latency varies with the input size and filter structure. After you update the model, the block
displays the latency on the block icon. The displayed latency is the number of cycles between the first
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valid input and the first valid output, assuming that the input is continuous. The filter coefficients and
complex multiplication do not affect the latency.

This figure shows the output of the block for a vector input length 8 when you set the Filter
structure parameter to Direct form transposed and all other parameters to their default values.
The latency of the block is 19 clock cycles.

¥ Input Signals
»-dataln 02360 -0.8352 4,
validin L
¥ Output Signals
»-dataOut 0.0071+0i 0.0158 0+0i 0+0i 0+0i 0x0i 0+0i 0+0i 0+0i 0+0i

validOut 1

This figure shows the output of the block for a vector input of length 8 when you set the Filter
structure parameter to Direct form systolic and all other parameters to their default values.
The latency of the block is 31 clock cycles.

Input Signals
»-dataln 0.8752+0i 1.
validin
Output Signals
»dataOut

validOut

Cursor 1

Cursor 2

Performance

These resource and performance data are the place-and-route results from the generated HDL
targeted to the Xilinx Zyng- 7000 ZC706 evaluation board. The two examples in the tables use this
common configuration:

* 1-by-8 vector

* 16-bit complex input data

» Filter structure — Direct form transposed

 Filter length — 96 coefficients

* Coefficient data type — Same word length as input

* Output data type — Same as input

* Complex multiplication (default) — Use 4 multipliers and 2 adders

* Output scaling — Enabled

The performance of the synthesized HDL code varies with your target and synthesis options.

When you set the Filter structure parameter to Direct form transposed, the block achieves a
clock frequency of 382 MHz. The design uses these resources.

Resource Number Used
LUT 1953




Resource Number Used
FFS 3833
Xilinx LogiCORE® DSP48 208

When you set the Filter structure to Direct form systolic, the block achieves a clock

frequency of 381 MHz. The design uses these resources.

Resource Number Used
LUT 2026

FFS 3519

Xilinx LogiCORE DSP48 208

Channel Synthesizer

Version History
Introduced in R2022a

References

[1] Harris, Fredric J. Multirate Signal Processing for Communication Systems. Upper Saddle River,
N.J: Prentice Hall PTR, 2004.

[2] Harris, Frederic J., Chris Dick, and Michael Rice. "Digital Receivers and Transmitters Using
Polyphase Filter Banks for Wireless Communications." IEEE® Transactions on Microwave
Theory and Techniques. 51, no 4, (April 2003): 1395-1412. https://doi.org/10.1109/
TMTT.2003.809176.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
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HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays

peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also

Blocks

Channelizer

Objects

dsphdl.ChannelSynthesizer
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FFT

Compute fast Fourier transform (FFT)

Libraries:
P DSP HDL Toolbox / Transforms

data data

FFT
Latency = —

Description

The FFT block provides two architectures that implement the algorithm for FPGA and ASIC
applications. You can select an architecture that optimizes for either throughput or area.

* Streaming Radix 272 — Use this architecture for high-throughput applications. This
architecture supports scalar or vector input data. You can achieve gigasamples-per-second (GSPS)
throughput using vector input.

* Burst Radix 2 — Use this architecture for a minimum resource implementation, especially with
large fast Fourier transform (FFT) sizes. Your system must be able to tolerate bursty data and
higher latency. This architecture supports only scalar input data.

The FFT block accepts real or complex data, provides hardware-friendly control signals, and optional
output frame control signals.

Ports
Input

data — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values. Only the Streaming
Radix 272 architecture supports a vector input. The vector size must be a power of 2, in the range
from 1 to 64, and less than or equal to FFT length.

The software supports double and single data types for simulation, but not for HDL code
generation.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.

Data Types: Boolean

reset — Clears internal states
scalar
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Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select the Enable reset input port parameter.

Data Types: Boolean
Output

data — Frequency channel output data
scalar or column vector of real or complex values

When input is fixed-point data type and scaling is enabled, the output data type is the same as the
input data type. When the input is integer type and scaling is enabled, the output is fixed-point type
with the same word length as the input integer. The output order is bit-reversed by default. If scaling
is disabled, the output word length increases to avoid overflow. Only the Streaming Radix 272
architecture supports vector input and output. For more information, see the Divide butterfly
outputs by two parameter.

Data Types: double | single | fixed point

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.

Data Types: Boolean

ready — Indicates block is ready for new input data
scalar

Control signal that indicates that the block is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the block ignores any input data in the next time step.

For a waveform that shows this protocol, see the third diagram in the “Timing Diagram” on page 1-
79 section.

Dependencies

To enable this port, set the Architecture parameter to Burst Radix 2.

Data Types: Boolean

start — Indicates first valid cycle of output frame
scalar

Control signal that indicates the first valid cycle of the output frame. When start is 1 (true), the
block returns the first valid sample of the frame on the output data port.
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Dependencies

To enable this port, on the Control Ports tab, select the Enable start output port parameter.
Data Types: Boolean

end — Indicates last valid cycle of output frame
scalar

Control signal that indicates the last valid cycle of the output frame. When end is 1 (true), the block
returns the last valid sample of the frame on the output data port.

Dependencies

To enable this port, on the Control Ports tab, select the Enable end output port parameter.
Data Types: Boolean

Parameters

Main

FFT length — Number of data points for one FFT calculation
1024 (default)

This parameter specifies the number of data points used for one FFT calculation. For HDL code
generation, the FFT length must be a power of 2 between 22 to 216,

Architecture — Architecture type

Streaming Radix 272 (default) | Burst Radix 2
This parameter specifies the type of architecture.

* Streaming Radix 272 — Select this value to specify low-latency architecture. This architecture
type supports GSPS throughput when using vector input.

* Burst Radix 2 — Select this value to specify minimum resource architecture. This architecture
type does not support vector input. When you use this architecture, your input data must comply
with the ready backpressure signal.

For more details about these architectures, see “Algorithms” on page 1-77.

Complex multiplication — HDL implementation

Use 4 multipliers and 2 adders (default) | Use 3 multipliers and 5 adders

This parameter specifies the complex multiplier type for HDL implementation. Each multiplication is
implemented either with Use 4 multipliers and 2 adders or with Use 3 multipliers and
5 adders. The implementation speed depends on the synthesis tool and target device that you use.

Output in bit-reversed order — Order of output data

on (default) | of f

This parameter returns output elements in bit-reversed order.
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When you select this parameter, the output elements are bit-reversed. To return output elements in
linear order, clear this parameter.

The FFT algorithm calculates output in the reverse order to the input. If you specify the output to be
in the same order as the input, the algorithm performs an extra reversal operation. For more
information, see “Linear and Bit-Reversed Output Order”.

Input in bit-reversed order — Expected order of input data

off (default) | on

When you select this parameter, the block expects input data in bit-reversed order. By default, this
parameter is disabled, and the block expects the input in linear order.

The FFT algorithm calculates output in the reverse order to the input. If you specify the output to be
in the same order as the input, the algorithm performs an extra reversal operation. For more
information, see “Linear and Bit-Reversed Output Order”.

Divide butterfly outputs by two — FFT scaling

off (default) | on

When you select this parameter, the FFT implements an overall 1/N scale factor by dividing the
output of each butterfly multiplication by two. This adjustment keeps the output of the FFT in the
same amplitude range as its input. If you disable scaling, the FFT avoids overflow by increasing the
word length by 1 bit after each butterfly multiplication. The bit increase is the same for both
architectures.

Data Types

Rounding mode — Rounding mode for internal fixed-point calculations

Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

This parameter specifies the type of rounding mode for internal fixed-point calculations. For more
information about rounding modes, see “Rounding Modes”. When the input is any integer or fixed-
point data type, this block uses fixed-point arithmetic for internal calculations. This parameter does
not apply when the input data is single or double. Rounding applies to twiddle-factor
multiplication and scaling operations.

Control Ports
Enable reset input port — Optional reset signal
off (default) | on

This parameter enables a reset input port. When you select this parameter, the input reset port
appears on the block icon.

Enable start output port — Optional control signal indicating start of data
off (default) | on

This parameter enables a port that indicates the start of output data. When you select this parameter,
the output start port appears on the block icon.
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Enable end output port — Optional control signal indicating end of data
off (default) | on

This parameter enables a port that indicates the end of output data. When you select this parameter,
the output end port appears on the block icon.

Algorithms
Streaming Radix 272

The streaming Radix 272 architecture implements a low-latency architecture. It saves resources
compared to a streaming Radix 2 implementation by factoring and grouping the FFT equation. The
architecture has log,(N) stages. Each stage contains two single-path delay feedback (SDF) butterflies
with memory controllers. When you use vector input, each stage operates on fewer input samples, so
some stages reduce to a simple butterfly, without SDE.

16-Point FFT

Scalar Input
O
2x1 Input ;
™
s
i
4x1 Input
™
LW

The first SDF stage is a regular butterfly. The second stage multiplies the outputs of the first stage by
-j. To avoid a hardware multiplier, the block swaps the real and imaginary parts of the inputs, and
again swaps the imaginary parts of the resulting outputs. Each stage rounds the result of the twiddle
factor multiplication to the input word length. The twiddle factors have two integer bits, and the rest
of the bits are used for fractional bits. The twiddle factors have the same bit width as the input data,
WL. The twiddle factors have two integer bits, and WL-2 fractional bits.
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If you enable scaling, the algorithm divides the result of each butterfly stage by 2. Scaling at each
stage avoids overflow, keeps the word length the same as the input, and results in an overall scale
factor of 1/N. If scaling is disabled, the algorithm avoids overflow by increasing the word length by 1
bit at each stage. The diagram shows the butterflies and internal word lengths of each stage, not
including the memory.

—>
R
0] WL
o el (:;iﬁtgn (:;igtgn o
WL N WL+2
D
—»
WL 2WL+1— WL
1 2
Burst Radix 2
The burst Radix 2 architecture implements the FFT by using a single complex butterfly multiplier.
The algorithm cannot start until it has stored the entire input frame, and it cannot accept the next
frame until computations are complete. The output ready port indicates when the algorithm is ready
for new data. The diagram shows the burst architecture, with pipeline registers.
D = pipeline register
-validin Controller Addr e Twiddle

-dataln—

Mem

Ready -

DataOut >

Scaling
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2
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When you use this architecture, your input data must comply with the ready backpressure signal.
Control Signals

The algorithm processes input data only when the input valid port is 1. Output data is valid only
when the output valid port is 1.
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When the optional input reset port is 1, the algorithm stops the current calculation and clears all
internal states. The algorithm begins new calculations when reset port is 0 and the input valid port
starts a new frame.

Timing Diagram

This diagram shows the input and output valid port values for contiguous scalar input data,
streaming Radix 2”2 architecture, an FFT length of 1024, and a vector size of 16.

The diagram also shows the optional start and end port values that indicate frame boundaries. If you
enable the start port, the start port value pulses for one cycle with the first valid output of the frame.
If you enable the end port, the start port value pulses for one cycle with the last valid output of the
frame.

If you apply continuous input frames, the output will also be continuous after the initial latency.

The input valid port can be noncontiguous. Data accompanied by an input valid port is processed as
it arrives, and the resulting data is stored until a frame is filled. Then the algorithm returns
contiguous output samples in a frame of N (FFT length) cycles. This diagram shows noncontiguous
input and contiguous output for an FFT length of 512 and a vector size of 16.

When you use the burst architecture, you cannot provide the next frame of input data until memory
space is available. The ready signal indicates when the algorithm can accept new input data. You
must apply input data and valid signals only when ready is 1 (true). The algorithm ignores any input
data and valid signals when ready is 0 (false).

Latency

The latency varies with the FFT length and input vector size. After you update the model, the block
icon displays the latency. The displayed latency is the number of cycles between the first valid input
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Cursor 1
Cursor 2

and the first valid output, assuming the input is contiguous. To obtain this latency programmatically,
see “Automatic Delay Matching for the Latency of FFT Block”.

When using the burst architecture with a contiguous input, if your design waits for ready to output 0
before de-asserting the input valid, then one extra cycle of data arrives at the input. This data sample
is the first sample of the next frame. The algorithm can save one sample while processing the current
frame. Due to this one sample advance, the observed latency of the later frames (from input valid to
output valid) is one cycle shorter than the reported latency. The latency is measured from the first
cycle, when input valid is 1 to the first cycle when output valid is 1. The number of cycles between
when ready port is 0 and the output valid port is 1 is always latency - FFTLength.

a1+0i
extra input cycle

| TefT3+16994i

Performance

This resource and performance data is the synthesis result from the generated HDL targeted to a
Xilinx Virtex®-6 (XC6VLX75T-1FF484) FPGA. The examples in the tables have this configuration:

* 1024 FFT length (default)

* Complex multiplication using 4 multipliers, 2 adders

* Output scaling enabled

* Natural order input, Bit-reversed output

* 16-bit complex input data

* Clock enables minimized (HDL Coder parameter)

Performance of the synthesized HDL code varies with your target and synthesis options. For instance,

reordering for a natural-order output uses more RAM than the default bit-reversed output, and real
input uses less RAM than complex input.

For a scalar input Radix 272 configuration, the design achieves 326 MHz clock frequency. The
latency is 1116 cycles. The design uses these resources.

Resource Number Used
LUT 4597

FFS 5353

Xilinx LogiCORE DSP48 12

Block RAM (16K) 6
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When you vectorize the same Radix 2”2 implementation to process two 16-bit input samples in
parallel, the design achieves 316 MHz clock frequency. The latency is 600 cycles. The design uses
these resources.




Resource Number Used
LUT 7653

FFS 9322

Xilinx LogiCORE DSP48 24

Block RAM (16K) 8

The block supports scalar input data only when implementing burst Radix 2 architecture. The burst
design achieves 309 MHz clock frequency. The latency is 5811 cycles. The design uses these

resources.
Resource Number Used
LUT 971

FFS 1254

Xilinx LogiCORE DSP48 3

Block RAM (16K) 6

Version History
Introduced in R2014a

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named FFT HDL Optimized and was included in the DSP System
Toolbox DSP System Toolbox HDL Support library.

R2022a: FFT length of 4

You can now set the FFT length to 4 (22). In previous releases the FFT length had to be a power of 2
from 8 (23) to 216.
References

[1] Algnabi, Y.S, FA. Aldaamee, R. Teymourzadeh, M. Othman, and M.S. Islam. “Novel architecture of
pipeline Radix 2°2 SDF FFT Based on digit-slicing technique.” 10th IEEE International
Conference on Semiconductor Electronics (ICSE). 2012, pp. 470-474.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.
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This block supports HDL code generation using HDL Coder. HDL Coder provides additional
configuration options that affect HDL implementation and synthesized logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.

Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

* You cannot generate HDL code for this block inside an Enabled Subsystem.

See Also

Blocks
IFFT | Channelizer

Objects

dsphdl.FFT | dsphdl.IFFT




IFFT

IFFT

Compute inverse fast Fourier transform (IFFT)

Libraries:
1= o DSP HDL Toolbox / Transforms

Latency = —

Description

The IFFT block provides two architectures that implement the algorithm for FPGA and ASIC
applications. You can select an architecture that optimizes for either throughput or area.

* Streaming Radix 272 — Use this architecture for high-throughput applications. This
architecture supports scalar or vector input data. You can achieve gigasamples-per-second (GSPS)
throughput using vector input.

* Burst Radix 2 — Use this architecture for a minimum resource implementation, especially with
large fast-Fourier-transform (FFT) sizes. Your system must be able to tolerate bursty data and
higher latency. This architecture supports only scalar input data.

The IFFT accepts real or complex data, provides hardware-friendly control signals, and optional
output frame control signals.

Ports
Input

data — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values. Only the Streaming
Radix 272 architecture supports a vector input. The vector size must be a power of 2, in the range
from 1 to 64, and less than or equal to the FFT length.

The software supports double and single data types for simulation, but not for HDL code
generation.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.

When you set the Architecture parameter to Burst Radix 2, you must apply input data and valid
signals only when ready is 1 (true). The block ignores the input data and valid signals when ready is
0 (false).
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Data Types: Boolean

reset — Clears internal states
scalar

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select the Enable reset input port parameter.

Data Types: Boolean
Output

data — Frequency channel output data
scalar or column vector of real or complex values

When input is fixed-point data type and scaling is enabled, the output data type is the same as the
input data type. When the input is integer type and scaling is enabled, the output is fixed-point type
with the same word length as the input integer. The output order is bit-reversed by default. If scaling
is disabled, the output word length increases to avoid overflow. Only the Streaming Radix 22
architecture supports vector input and output. For more information, see Divide butterfly outputs
by two parameter.

Data Types: fixed point | double | single

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.

Data Types: Boolean

ready — Indicates block is ready for new input data
scalar

Control signal that indicates that the block is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the block ignores any input data in the next time step.

For a waveform that shows this protocol, see the third diagram in the “Timing Diagram” on page 1-
90 section.

Dependencies

To enable this port, set the Architecture parameter to Burst Radix 2.

Data Types: Boolean
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start — Indicates first valid cycle of output frame
scalar

Control signal that indicates the first valid cycle of the output frame. When start is 1 (true), the
block returns the first valid sample of the frame on the output data port.

Dependencies

To enable this port, on the Control Ports tab, select the Enable start output port parameter.
Data Types: Boolean

end — Indicates last valid cycle of output frame
scalar

Control signal that indicates the last valid cycle of the output frame. When start is 1 (true), the
block returns the last valid sample of the frame on the output data port.

Dependencies

To enable this port, on the Control Ports tab, select the Enable end output port parameter.

Data Types: Boolean

Parameters

Main

FFT length — Number of data points used for one FFT calculation
1024 (default)

This parameter specifies the number of data points used for one inverse-fast-Fourier-transform (IFFT)
calculation. For HDL code generation, the FFT length must be a power of 2 between 22 and 216,

Architecture — Architecture type
Streaming Radix 272 (default) | Burst Radix 2

This parameter specifies the type of architecture.

* Streaming Radix 272 — Select this value to specify low-latency architecture. This architecture
type supports GSPS throughput when using vector input.

* Burst Radix 2 — Select this value to specify minimum resource architecture. This architecture
type does not support vector input. When you use this architecture, your input data must comply
with the ready backpressure signal.

For HDL code generation, the FFT length must be a power of 2 between 22 and 215,

For more details about these architectures, see “Algorithms” on page 1-87.

Complex Multiplication — HDL implementation

Use 4 multipliers and 2 adders (default) | Use 3 multipliers and 5 adders
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This parameter specifies the complex multiplier type for HDL implementation. Each multiplication is
implemented either with Use 4 multipliers and 2 adders or with Use 3 multipliers and
5 adders. The implementation speed depends on the synthesis tool and target device that you use.

Output in bit-reversed order — Order of output data

on (default) | off
This parameter returns output elements in bit-reversed order.

When you select this parameter, the output elements are bit-reversed. To return output elements in
linear order, clear this parameter.

The IFFT algorithm calculates output in the reverse order to the input. If you specify the output to be
in the same order as the input, the algorithm performs an extra reversal operation. For more
information, see “Linear and Bit-Reversed Output Order”.

Input in bit-reversed order — Expected order of input data

off (default) | on

When you select this parameter, the block expects input data in bit-reversed order. By default, the
check box is cleared and the input is expected in linear order.

The IFFT algorithm calculates output in the reverse order to the input. If you specify the output to be
in the same order as the input, the algorithm performs an extra reversal operation. For more
information, see “Linear and Bit-Reversed Output Order”.

Divide butterfly outputs by two — FFT scaling

on (default) | off

When you select this parameter, the block implements an overall 1/N scale factor by dividing the
output of each butterfly multiplication by two. This adjustment keeps the output of the IFFT in the
same amplitude range as its input. If you disable scaling, the block avoids overflow by increasing the
word length by 1 bit after each butterfly multiplication. The bit increase is the same for both
architectures.

Data Types

Rounding Method — Rounding mode for internal fixed-point calculations

Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

This parameter allows you to select the type of rounding mode for internal fixed-point calculations.
For more information about rounding modes, see “Rounding Modes”. When the input is any integer or
fixed-point data type, the IFFT algorithm uses fixed-point arithmetic for internal calculations. This
option does not apply when the input is single or double type. Rounding applies to twiddle factor
multiplication and scaling operations.

Control Ports

Enable reset input port — Optional reset signal

off (default) | on
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This parameter enables a reset input port. When you select this parameter, the input reset port
appears on the block icon.

Enable start output port — Optional control signal indicating start of data

off (default) | on

This parameter enables a port that indicates the start of output data. When you select this parameter,
the output start port appears on the block icon.

Enable end output port — Optional control signal indicating end of data

off (default) | on

This parameter enables a port that indicates the end of output data. When you select this parameter,
the output end port appears on the block icon.

Algorithms
Streaming Radix 272

The streaming Radix 272 architecture implements a low-latency architecture. It saves resources
compared to a streaming Radix 2 implementation by factoring and grouping the FFT equation. The
architecture has log,(N) stages. Each stage contains two single-path delay feedback (SDF) butterflies
with memory controllers. When you use vector input, each stage operates on fewer input samples, so
some stages reduce to a simple butterfly, without SDF.
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The first SDF stage is a regular butterfly. The second stage multiplies the outputs of the first stage by
-j. To avoid a hardware multiplier, the block swaps the real and imaginary parts of the inputs, and
again swaps the imaginary parts of the resulting outputs. Each stage rounds the result of the twiddle
factor multiplication to the input word length. The twiddle factors have two integer bits, and the rest
of the bits are used for fractional bits. The twiddle factors have the same bit width as the input data,
WL. The twiddle factors have two integer bits, and WL-2 fractional bits.

If you enable scaling, the algorithm divides the result of each butterfly stage by 2. Scaling at each
stage avoids overflow, keeps the word length the same as the input, and results in an overall scale
factor of 1/N. If scaling is disabled, the algorithm avoids overflow by increasing the word length by 1
bit at each stage. The diagram shows the butterflies and internal word lengths of each stage, not

including the memory.
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Burst Radix 2

The burst Radix 2 architecture implements the FFT by using a single complex butterfly multiplier.
The algorithm cannot start until it has stored the entire input frame, and it cannot accept the next
frame until computations are complete. The output ready port indicates when the algorithm is ready
for new data. The diagram shows the burst architecture, with pipeline registers.
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When you use this architecture, your input data must comply with the ready backpressure signal.
Control Signals

The algorithm processes input data only when the input valid port is 1. Output data is valid only
when the output valid port is 1.

When the optional input reset port is 1, the algorithm stops the current calculation and clears all

internal states. The algorithm begins new calculations when reset port is 0 and the input valid port
starts a new frame.
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Timing Diagram

This diagram shows the input and output valid port values for contiguous scalar input data,
streaming Radix 2”2 architecture, an FFT length of 1024, and a vector size of 16.

The diagram also shows the optional start and end port values that indicate frame boundaries. If you
enable the start port, the start port value pulses for one cycle with the first valid output of the frame.
If you enable the end port, the start port value pulses for one cycle with the last valid output of the
frame.

If you apply continuous input frames, the output will also be continuous after the initial latency.

The input valid port can be noncontiguous. Data accompanied by an input valid port is processed as
it arrives, and the resulting data is stored until a frame is filled. Then the algorithm returns
contiguous output samples in a frame of N (FFT length) cycles. This diagram shows noncontiguous
input and contiguous output for an FFT length of 512 and a vector size of 16.

When you use the burst architecture, you cannot provide the next frame of input data until memory
space is available. The ready signal indicates when the algorithm can accept new input data. You
must apply input data and valid signals only when ready is 1 (true). The algorithm ignores any input
data and valid signals when ready is 0 (false).

1-90

Latency

The latency varies with the FFT length and input vector size. After you update the model, the block
icon displays the latency. The displayed latency is the number of cycles between the first valid input
and the first valid output, assuming the input is contiguous. To obtain this latency programmatically,
see “Automatic Delay Matching for the Latency of FFT Block”.

When using the burst architecture with a contiguous input, if your design waits for ready to output 0
before de-asserting the input valid, then one extra cycle of data arrives at the input. This data sample
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is the first sample of the next frame. The algorithm can save one sample while processing the current
frame. Due to this one sample advance, the observed latency of the later frames (from input valid to
output valid) is one cycle shorter than the reported latency. The latency is measured from the first
cycle, when input valid is 1 to the first cycle when output valid is 1. The number of cycles between
when ready port is 0 and the output valid port is 1 is always latency - FFTLength.

TefT3+16994i

Cursor 1
Cursor 2

Performance

This resource and performance data is the synthesis result from the generated HDL targeted to a
Xilinx Virtex-6 (XC6VLX75T-1FF484) FPGA. The examples in the tables have this configuration:

* 1024 FFT length (default)

* Complex multiplication using 4 multipliers, 2 adders

* Output scaling enabled

* Natural order input, Bit-reversed output

* 16-bit complex input data

* Clock enables minimized (HDL Coder parameter)

Performance of the synthesized HDL code varies with your target and synthesis options. For instance,

reordering for a natural-order output uses more RAM than the default bit-reversed output, and real
input uses less RAM than complex input.

For a scalar input Radix 2”2 configuration, the design achieves 326 MHz clock frequency. The
latency is 1116 cycles. The design uses these resources.

Resource Number Used
LUT 4597

FFS 5353

Xilinx LogiCORE DSP48 12

Block RAM (16K) 6

When you vectorize the same Radix 2”2 implementation to process two 16-bit input samples in
parallel, the design achieves 316 MHz clock frequency. The latency is 600 cycles. The design uses
these resources.

Resource Number Used
LUT 7653

FFS 9322

Xilinx LogiCORE DSP48 24
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Resource Number Used

Block RAM (16K) 8

The block supports scalar input data only when implementing burst Radix 2 architecture. The burst
design achieves 309 MHz clock frequency. The latency is 5811 cycles. The design uses these

resources.
Resource Number Used
LUT 971

FFS 1254

Xilinx LogiCORE DSP48 3

Block RAM (16K) 6

Version History
Introduced in R2014a

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named IFFT HDL Optimized and was included in the DSP System
Toolbox DSP System Toolbox HDL Support library.

R2022a: FFT length of 4

You can now set the FFT length to 4 (22). In previous releases the FFT length had to be a power of 2
from 8 (23) to 216.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
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HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

* You cannot generate HDL code for this block inside an Enabled Subsystem.

See Also

Blocks
FFT | Channelizer

Objects
dsphdl.IFFT |dsphdl.FFT
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Channelizer

Polyphase filter bank and fast Fourier transform

Libraries:
DSP HDL Toolbox / Filtering

data data

Description

The Channelizer block separates a broadband input signal into multiple narrowband output signals. It
provides hardware speed and area optimization for streaming data applications. The block accepts
scalar or vector input of real or complex data, provides hardware-friendly control signals, and has
optional output frame control signals. You can achieve gigasamples-per-second (GSPS) throughput
using vector input. The block implements a polyphase filter, with one subfilter per input vector
element. The hardware implementation interleaves the subfilters, which results in sharing each filter
multiplier (FFT Length / Input Size) times. The FFT implementation uses the same pipelined Radix
272 FFT algorithm as the FFT block.

Ports
Input

data — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or a column vector of real or complex values.

The vector size must be a power of 2 and in the range [2, 64], and is not greater than the number of
channels (FFT length).

The software supports double and single data types for simulation, but not for HDL code
generation.

The block does not accept uint64 data.

Data Types: fixed point |int8 | intl6 | int32 | int64 | uint8 | uint16 |uint32 | single |
double

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.

Data Types: Boolean

reset — Clears internal states
scalar
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Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select the Enable reset input port parameter.

Data Types: Boolean
Output

data — Frequency channel output data
vector

* Ifyou set Output vector size to Same as number of frequency bands (default), the output
data is a 1-by-M vector where M is the FFT length.

+ Ifyou set Output vector size to Same as input size, the output data is an M-by-1 vector
where M is the input vector size.

The output order is bit natural for either output size. The output data type is a result of the Filter
output and the bit growth in the FFT necessary to avoid overflow.

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),

the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.

Data Types: Boolean

start — Indicates first valid cycle of output frame
scalar

Control signal that indicates the first valid cycle of the output frame.

When start is 1 (true), the block returns the first valid sample of the frame from the output data
port.

Dependencies

To enable this port, on the Control Ports select the Enable start output port parameter.

Data Types: Boolean

end — Indicates last valid cycle of output frame
scalar

Control signal that indicates the last valid cycle of the output frame.

When end is 1 (true), the block returns the last valid sample of the frame from the output data port.
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Dependencies

To enable this port, on the Control Ports select the Enable end output port parameter.

Data Types: Boolean

Parameters
Main
Filter coefficients — Polyphase filter coefficients

[ -0.032, 0.121, 0.318, 0.482, 0.546, 0.482, 0.318, 0.121, -0.032 ] (default) |
vector of real or complex numeric values

If the number of coefficients is not a multiple of Number of frequency bands (FFT length), the
block pads this vector with zeros. The default filter specification is a raised-cosine FIR filter,
rcosdesign(0.25,2,4, 'sqrt'). You can specify a vector of coefficients or a call to a filter design
function that returns the coefficient values. By default, the block casts the coefficients to the same
data type as the input.

Filter structure — HDL filter architecture

Direct form transposed (default) | Direct form systolic

Specify the HDL filter architecture as one of these structures:

* Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications. For architecture and performance details, see “Fully Parallel
Transposed Architecture”.

« Direct form systolic — This architecture provides a fully parallel filter implementation that
makes efficient use of Intel and Xilinx DSP blocks. For architecture and performance details, see
“Fully Parallel Systolic Architecture”.

Number of frequency bands (FFT length) — FFT length

8 (default) | integer power of two

For HDL code generation, the FFT length must be a power of 2 from 22 to 216.

Complex multiplication — HDL implementation of complex multipliers

Use 4 multipliers and 2 adders (default) | Use 3 multipliers and 5 adders

HDL implementation of complex multipliers, specified as either 'Use 4 multipliers and 2

adders' or 'Use 3 multipliers and 5 adders'. Depending on your synthesis tool and target

device, one option may be faster or smaller.

Output vector size — Size of output data

Same as number of frequency bands (default) | Same as input size

The output data is a vector of M elements. The output order is bit natural for either output size.
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* Same as number of frequency bands — Output data is a 1-by-M vector, where M is the FFT
length.

* Same as input size — Output data is an M-by-1 vector, where M is the input vector size.

Divide butterfly outputs by two — FFT scaling

on (default) | off

When you select this parameter, the FFT implements an overall 1/N scale factor by scaling the result
of each pipeline stage by 2. This adjustment keeps the output of the FFT in the same amplitude range
as its input. If scaling is disabled, the FFT avoids overflow by increasing the word length by 1 bit at
each stage.

Data Types

Rounding mode — Rounding method used for internal fixed-point calculations

Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

See “Rounding Modes”. The block uses fixed-point arithmetic for internal calculations when the input
is any integer or fixed-point data type. This option does not apply when the input is single or
double. Each FFT stage rounds after the twiddle factor multiplication but before the butterflies.
Rounding can also occur when casting the coefficients and the output of the polyphase filter to the
data types you specify.

Saturate on integer overflow — Overflow handling for internal fixed-point calculations

off (default) | on

See “Overflow Handling”. The block uses fixed-point arithmetic for internal calculations when the
input is any integer or fixed-point data type. This option does not apply when the input is single or
double. This option applies to casting the coefficients and the output of the polyphase filter to the
data types you specify.

The FFT algorithm avoids overflow by either scaling the output of each stage (Normalize enabled),
or by increasing the word length by 1 bit at each stage (Normalize disabled).

Coefficients — Data type of the filter coefficients

Inherit: Same word length as input (default) | data type expression

The block casts the polyphase filter coefficients to this data type, using the rounding and overflow
settings you specify. When you select Inherit: Same word length as input (default), the block
selects the binary point using fi() best-precision rules.

Filter output — Data type of the output of the polyphase filter

Inherit: Same word length as input (default) | Inherit: via internal rule | data type
expression

The block casts the output of the polyphase filter (the input to the FFT) to this data type, using the
rounding and overflow settings you specify. When you select Inherit: via internal rule, the
block selects a best-precision binary point by considering the values of your filter coefficients and the
range of your input data type.
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By default, the FFT logic does not modify the data type. When you disable Divide butterfly outputs
by two, the FFT increases the word length by 1 bit at each stage to avoid overflow.

Control Ports
Enable reset input port — Optional reset signal
off (default) | on

When you select this parameter, the reset port shows on the block icon. When the reset input is
true, the block stops calculation and clears all internal state.

Enable start output port — Optional control signal indicating start of data
off (default) | on

When you select this parameter, the start port shows on the block icon. The start signal is true for
the first cycle of output data in a frame.

Enable end output port — Optional control signal indicating end of data
off (default) | on

When you select this parameter, the end port shows on the block icon. The end signal is true for the
last cycle of output data in a frame.

Algorithms

The polyphase filter algorithm requires a subfilter for each FFT channel. For more detail on the
polyphase filter architecture, refer to [1], and to the Channelizer (DSP System Toolbox) block
reference page.

Note The output of this block does not match the output from the Channelizer (DSP System Toolbox)
block sample-for-sample. This mismatch is because the blocks apply the input samples to the
subfilters in different orders. The Channelizer (DSP System Toolbox) block applies input X(0) to
subfilter Ey.1(2), X(1) to subfilter E,5(2), ..., X(M-1) to subfilter E,(z). The channels detected by both
blocks match, when analyzed over multiple frames.

If the input vector size, M, is the same as the FFT length, N, then the block implements N subfilters
in the hardware. Each subfilter is an FIR filter (Direct form transposed orDirect form
systolic) with NumCoeffs/N taps.
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If the vector size is less than N, the block implements one subfilter for each input vector element. The
subfilter multipliers are shared as necessary to implement N channel filters. The shared multiplier
taps have a lookup table for N/M filter coefficients. Each tap is followed by a delay line of N/M-1
cycles.

The output of the subfilters is cast to the specified Filter output, using the rounding and overflow
settings you chose. Each filter tap in the subfilter is pipelined to target the DSP sections of an FPGA.
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For instance, for an FFT length of 8, and an input vector size of 4, the block implements four filters.
Each multiplier is shared N/M times, or twice. Each tap applies two coefficients, and the delay line is
N/M-1 cycles.
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For scalar input, the block implements one filter. Each multiplier is shared N times. Each tap applies
N coefficients, and the delay line is N-1 cycles.

1-100



Channelizer

- —
: N =# of
. channels
—
— Y(N-1)
Latency

The latency varies with FFT length, vector size, and filter structure. After you update the model, the
latency is displayed on the block icon. The displayed latency is the number of cycles between the first
valid input and the first valid output, assuming that the input is contiguous. The filter coefficients do
not affect the latency. Setting the output size equal to the input size reduces the latency, because the
samples are not saved and reordered.

Control Signals

This diagram shows validIn and validOut signals for contiguous input data with a vector size of
16, an FFT length of 512, and when you select the Direct form transposed filter architecture. In
this example, the output vector size is specified same as the input vector size.

The diagram also shows the optional startOut and endOut signals that indicate frame boundaries.
When enabled, startOut pulses for one cycle with the first validOut of the frame, and endQut
pulses for one cycle with the last validOut of the frame.

If you apply continuous input frames (no gap in validIn between frames), the output will also be
continuous, after the initial latency.
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The validIn signal can be noncontiguous. Data accompanied by a validIn signal is stored until a
frame is filled. Then the data in output is a contiguous frame of N/M cycles. This diagram shows
noncontiguous input and contiguous output for an FFT length of 512 and a vector size of 16 samples.
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Performance

These resource and performance data are the place-and-route results from the generated HDL
targeted to a Xilinx Zyng- 7000 ZC706 evaluation board. The three examples in the tables use this
common configuration.

* FFT length (default) — 8

* Filter length — 96 coefficients

» Filter structure — Direct form transposed

* 16-bit complex input data

* Coefficient data type — Same word length as input

+ Filter output data type — Same word length as input

* Complex multiplication — Use 4 multipliers and 2 adders

* Output scaling — Enabled

* Output vector size — Same as input size

Performance of the synthesized HDL code varies with your target and synthesis options.

For scalar input, the design achieves a clock frequency of 506.84 MHz. The latency is 51 cycles. The
subfilters share each multiplier eight (N) times. The design uses these resources.

Resource Number Used
LUT 2898

FFS 3746

Xilinx LogiCORE DSP48 28

For four-sample vector input, the design achieves a clock frequency of 452 MHz. The latency is 37
cycles. The subfilters share each multiplier twice (N/M). The design uses these resources.

Resource Number Used
LUT 1991

FFS 8305

Xilinx LogiCORE DSP48 104

For eight-sample vector input, the design achieves a clock frequency of 360 MHz. The latency is 18
cycles. When the input size is the same as the FFT length, the subfilters do not share any multipliers.

The design uses these resources.
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Resource Number Used
LUT 1683

FFS 2992

Xilinx LogiCORE DSP48 208

Version History
Introduced in R2017a

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named Channelizer HDL Optimized and was included in the DSP
System Toolbox DSP System Toolbox HDL Support library.

R2022a: FFT length of 4

You can now set the FFT length to 4 (22). In previous releases the FFT length had to be a power of 2
from 8 (23) to 216.

R2022a: Direct form systolic filter structure support

The block now supports fully parallel systolic architecture. To use this architecture, set the Filter
structure parameter to Direct form systolic.

References
[1] Harris, E J., C. Dick, and M. Rice. “Digital Receivers and Transmitters Using Polyphase Filter

Banks for Wireless Communications.” IEEE Transactions on Microwave Theory and
Techniques. Vol. 51, No. 4, April 2003.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Architecture

This block has one default HDL architecture.
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HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays

peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also

Blocks

Channel Synthesizer | FFT

Objects

dsphdl.Channelizer | dsphdl.ChannelSynthesizer

Topics

“High-Throughput HDL Algorithms”




FIR Decimator

FIR Decimator

Finite impulse response (FIR) decimation filter

Libraries:
3 data data p DSP HDL Toolbox / Filtering

2]
FIR Decimator
Latency = —
N valid walid [»

Description

The FIR Decimator block implements a single-rate polyphase FIR decimation filter that is optimized
for HDL code generation. The block provides a hardware-friendly interface with input and output
control signals. To provide a cycle-accurate simulation of the generated HDL code, the block models
architectural latency including pipeline registers and resource sharing.

The block accepts scalar or vector input. When you use vector input and the vector size is less than
the decimation factor, the decimation factor must be an integer multiple of the vector size. In this
case, the output is scalar and an output valid signal indicates which samples are valid after
decimation. The output data is valid every DecimationFactor/VectorSize samples. The waveform
shows an input vector of four samples and a decimation factor of eight. The output data is a scalar
that is valid every second cycle.

When you use vector input and the vector size is greater than the decimation factor, the vector size
must be an integer multiple of the decimation factor. In this case, the output is a vector of VectorSize/
DecimationFactor samples. The waveform shows an input vector of eight samples and a decimation
factor of four. The output data is a vector of two samples on every cycle.

The block provides two filter structures. The direct form systolic architecture provides an
implementation that makes efficient use of Intel and Xilinx DSP blocks. This architecture can be fully
parallel or serial. To use a serial architecture, the input samples must be spaced out with a regular
number of invalid cycles between the valid samples. The direct form transposed architecture is a fully
parallel implementation that is suitable for FPGA and ASIC applications. For a filter implementation
that matches multipliers, pipeline registers, and pre-adders to the DSP configuration of your FPGA
vendor, specify your target device when you generate HDL code.
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All filter structures optimize hardware resources by sharing multipliers for symmetric or
antisymmetric filters and by removing the multipliers for zero-valued coefficients such as in half-band
filters and Hilbert transforms.

The block implements one filter for each sample in the input vector. The block then shares this filter
between the polyphase subfilters by interleaving the subfilter coefficients in time.

Ports
Input

data — Input data
scalar | vector

Input data must be a real- or complex-valued scalar or vector. When you use vector input and the
vector size is less than the decimation factor, the decimation factor must be an integer multiple of the
vector size. When you use vector input and the vector size is greater than the decimation factor, the
vector size must be an integer multiple of the decimation factor. The vector size must be less than or
equal to 64.

When the input data type is an integer type or a fixed-point type, the block uses fixed-point arithmetic
for internal calculations.

The software supports double and single data types for simulation, but not for HDL code
generation.
Data Types: fixed point |single |double|int8 | intl6 | int32 | uint8 | uint1l6 |uint32

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.

Data Types: Boolean

reset — Clears internal states
scalar

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select Enable reset input port.
Data Types: Boolean
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Output

data — Filtered output data
scalar

Filtered output data, returned as a real- or complex-valued scalar. When the input data type is a
floating-point type, the output data inherits the data type of the input data. When the input data type
is an integer type or a fixed-point type, the Output parameter on the Data Types tab specifies the
output data type.

The output valid signal indicates which samples are valid after decimation. When the input vector
size is greater than the decimation factor, the output is a vector of VectorSize/DecimationFactor
samples.

Data Types: fixed point | single | double

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.

Data Types: Boolean

Parameters
Main
Coefficients — FIR filter coefficients

firl(35,0.4) (default) | real- or complex-valued vector

FIR filter coefficients, specified as a real- or complex-valued vector. You can specify the vector as a
workspace variable or as a call to a filter design function. When the input data type is a floating-point
type, the block casts the coefficients to the same data type as the input. When the input data type is
an integer type or a fixed-point type, you can set the data type for the coefficients on the Data Types
tab.

Example: firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]) defines coefficients using a linear-phase
filter design function.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32
Filter structure — HDL filter architecture
Direct form systolic (default) | Direct form transposed

The block implements a polyphase decomposition filter by using Discrete FIR Filter blocks. Both
structures share resources by interleaving the subfilter coefficients over one filter implementation for
each sample in the input vector. Specify the HDL filter architecture as one of these structures:

* Direct form systolic — This architecture provides a parallel or partly serial filter
implementation that makes efficient use of Intel and Xilinx DSP blocks. For a partly serial
implementation, specify a value greater than 1 for the Minimum number of cycles between
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valid input samples parameter. You cannot use frame-based input with the partly serial
architecture.

When Minimum number of cycles between valid input samples is greater than 1, the block
chooses a filter architecture that results in the fewest multipliers. If N allows for a single
multiplier in each subfilter, then the block implements a single serial filter and decimates the
output samples.

* Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications.

All implementations share resources by interleaving the subfilter coefficients over one filter
implementation for each sample in the input vector.

The block implements a polyphase decomposition filter using Discrete FIR Filter blocks. For
architecture details, see “FIR Filter Architectures for FPGAs and ASICs”.

Decimation factor — Decimation factor
2 (default) | integer greater than two

Specify an integer decimation factor greater than two. When you use vector input and the vector size
is less than the decimation factor, the decimation factor must be an integer multiple of the vector
size. When you use vector input and the vector size is greater than the decimation factor, the vector
size must be an integer multiple of the decimation factor.

Minimum number of cycles between valid input samples — Serialization requirement for input
timing

1 (default) | positive integer

Serialization requirement for input timing, specified as a positive integer. This parameter represents
N, the minimum number of cycles between valid input samples. To implement a fully serial
architecture, set Minimum number of cycles between valid input samples greater than the filter
length, L, or to Inf.

The block applies coefficient optimizations before serialization, so the sharing factor of the final filter
can be lower than the number of cycles that you specified.

Dependencies
To enable this parameter, set Filter structure to Direct form systolic.

You cannot use frame-based input with Minimum number of cycles between valid input samples
greater than 1.

Data Types

Rounding mode — Rounding mode for type-casting the output

Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Rounding mode for type-casting the output to the data type specified by the Output parameter. When

the input data type is floating point, the block ignores this parameter. For more details, see
“Rounding Modes”.
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Saturate on integer overflow — Overflow handling for type-casting the output

off (default) | on

Overflow handling for type-casting the output to the data type specified by the Output parameter.
When the input data type is floating point, the block ignores this parameter. For more details, see
“Overflow Handling”.

Coefficients — Data type of filter coefficients

Inherit: Same word length as input (default) | <data type expression>

The block casts the filter coefficients to this data type. The quantization rounds to the nearest
representable value and saturates on overflow. When the input data type is floating point, the block
ignores this parameter.

The recommended data type for this parameter is Inherit: Same word length as input.

The block returns a warning or error if either of these conditions occur.

* The coefficients data type does not have enough fractional length to represent the coefficients
accurately.

* The coefficients data type is unsigned, and the coefficients include negative values.
Output — Data type of filter output

Inherit: Inherit via internal rule (default) | Inherit: Same word length as input |
<data type expression>

The block casts the output of the filter to this data type. The quantization uses the settings of the
Rounding mode and Overflow mode parameters. When the input data type is floating point, the
block ignores this parameter.

The block increases the word length for full precision inside each filter tap and casts the final output
to the specified type. The maximum final internal data type (WF) depends on the input data type (WI),
the coefficient data type (WC), and the number of coefficients (L) and is given by

WF = WI + WC + ceil(log2(L)).

Because the coefficient values limit the potential growth, usually the actual full-precision internal
word length is smaller than WF.

Control Ports
Enable reset input port — Option to enable reset input port
off (default) | on

Select this check box to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.
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Use HDL global reset — Option to connect data path registers to generated HDL global reset signal

off (default) | on

Select this check box to connect the generated HDL global reset signal to the data path registers.
This parameter does not change the appearance of the block or modify simulation behavior in
Simulink. When you clear this check box, the generated HDL global reset clears only the control path
registers. The generated HDL global reset can be synchronous or asynchronous depending on the
HDL Code Generation > Global Settings > Reset type parameter in the model Configuration
Parameters.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Algorithms

The block implements a polyphase filter bank where the filter coefficients are decomposed into
DecimationFactor subfilters. If the filter length is not divisible by the Decimation factor parameter
value, then the block zero-pads the coefficients. When your input is regularly spaced, with two or
more cycles between valid samples, as indicated by the Minimum number of cycles between valid
input samples parameter, the filter can share multiplier resources in time.

This flow chart shows which filter architectures result from your parameter settings. It also shows the
number of multipliers used by the filter implementation. The filter architecture depends on the input
frame size, V, the decimation factor, R, the number of cycles between valid input samples, N, and the
number of filter coefficients, L. The architectures are in order from lowest resource use on the left, to
higher resources on the right. The higher resource architectures are trading off resource use for
higher throughput. Each architecture is described below the flow chart.

The number of multipliers shown in the flow chart is for filters with real input and real coefficients.
For complex input, the filter uses three times as many multipliers.
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L =filter coefficients @

R = decimation factor
V = input frame size
M = input sample spacing
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* Architecture 1 — Fully parallel one-tap interleaved polyphase filter bank.

When DecimationFactor is greater than the filter length, for any value of NumCycles, the filter
becomes a single-tap filter with interleaved coefficients, and uses a single multiplier.
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data data

Architecture 2 — Single fully serial filter.

When the filter has NumCycles greater than the number of filter coefficients, the block

implements a single fully serial filter and decimates the output samples by the decimation factor.
This serial filter uses one multiplier.

coeff
| ntend) |
o x[4n] o
data FIR 7| Decimate data

MumCycles = L
Architecture 3 — Partly serial polyphase filter bank.

When the filter has NumCycles greater than one and less than the number of filter coefficients,
the block implements a polyphase filter with DecimationFactor subfilters. This diagram shows
input data with a valid sample every second cycle and a DecimationFactor of 4. The output data

has one valid sample every eight cycles. This filter implementation uses FilterLength/NumCycles
multipliers.
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» FIR1
data data(x)
NumCycles =2
n{Z-4-end)
3 FIRZ
datalx+1)
h(3:4:end) FaY —
MumCycles=8
S FIR3
dataix+2)
hi{d:4:end)
FIR4
data(x+3)

Architecture 4 — Fully parallel polyphase interleaved filter bank (scalar).

The diagram shows the polyphase filter bank with scalar input, DecimationFactor set to 4, and
NumCycles set to 1. The four sets of decomposed coefficients are interleaved in time over a single
subfilter. The output data sample is valid every four cycles. The filter uses FilterLength/
DecimationFactor multipliers.

coeff

h(14end) |
hiZ:4:.end)
h(3:4:end) |
hi4:4.end)

v

FIR
data o H data

Architecture 5 — Fully parallel polyphase interleaved filter bank (vector)

The diagram shows the polyphase filter bank for an input vector size smaller than the decimation
factor. This filter has an input vector of four values and DecimationFactor is set to 8. Each of the
four subfilters has two sets of coefficients interleaved in time. The filter uses
InputSize*FilterLength/DecimationFactor multipliers.
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* Architecture 6 — Fully parallel frame-based filter bank

With an input vector size greater than the decimation factor, the block implements decimation
factor subfilters, each with frame-based input of VectorSize/DecimationFactor samples. The output
vector has VectorSize/DecimationFactor samples. The filter uses InputSize*FilterLength/
DecimationFactor multipliers.
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hi1:4:end)
N FIR1
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Each subfilter is implemented with a Discrete FIR Filter block. The adder at the output is pipelined to
accommodate higher synthesis frequencies. For architecture details, see “FIR Filter Architectures for

FPGAs and ASICs”.

Note The output of the FIR Decimator block does not match the output of the FIR Decimation block
from DSP System Toolbox sample-for-sample. This difference is mainly because of the phase in which
the samples are applied across the subfilters. To match the FIR Decimation block, apply Decimation
factor - 1 zeros to the FIR Decimator block at the start of the data stream.

The FIR Decimation block also uses slightly different data types for full-precision calculations. The
different data types can also introduce differences in output values if the values overflow the internal

data types.

Performance

This table shows the post-synthesis resource utilization for the HDL code generated for the default
FIR decimation filter using scalar input, a decimation factor of eight, 16-bit input, and 16-bit
coefficients. The synthesis targets a Xilinx ZC-706 (XC7Z045ffg900-2) FPGA. The Global HDL reset
type parameter is Synchronous, and the Minimize clock enables parameter is selected. The reset
port is disabled, so only the control path registers are connected to the generated global HDL reset.

Resource Uses
LUT 676
Slice Reg 878
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Resource Uses
Slice 257
Xilinx LogiCORE DSP48 5

After place and route, the maximum clock frequency of the design is 526 MHz.

For the same filter with a four-element input vector, the filter uses these resources.

Resource Uses
LUT 322
Slice Reg 2351
Slice 502
Xilinx LogiCORE DSP48 20

After place and route, the maximum clock frequency of the design is 518 MHz.

For the same filter with scalar input and numCycles set to four, the filter uses these resources.

Resource Uses
LUT 835
Slice Reg 1341
Xilinx LogiCORE DSP48 8
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After place and route, the maximum clock frequency of the design is 460 MHz.

Version History
Introduced in R2020b

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named FIR Decimation HDL Optimized and was included in the DSP
System Toolbox DSP System Toolbox HDL Support library.

R2022a: Serial systolic architecture

This block supports partly and fully serial systolic architecture. This architecture enables you to share
hardware resources if there is a regular pattern of invalid cycles between valid input samples. To use
the serial systolic architecture, set Filter structure to Direct form systolic and Minimum
number of cycles between valid input samples to a value greater than 1. You cannot use frame-

based input with the serial architecture.

R2022a: Input vector size can be greater than decimation factor

In previous releases, the block did not support input vector sizes greater than the decimation factor.
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Extended Capabili

C/C++ Code Generation

ties

Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation

Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized

logic.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline

Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline

Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

The FIR Decimator block does not support resource sharing optimization through HDL Coder
settings. Instead, set the Filter structure parameter to Partly serial systolic, and configure

a serialization factor base

See Also

Objects

d on either input timing or resource usage.

dsphdl.FIRDecimator | dsphdl.FIRFilter

Blocks
Discrete FIR Filter
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FIR Interpolator

Finite impulse response (FIR) interpolation filter

Libraries:
i datap DSP HDL Toolbox / Filtering

x[ni2]
FIR Interpolator valid [»
Latency = —

W]

N
A walid

ready [»

Description

The FIR Interpolator block implements a single-rate polyphase FIR interpolation filter that is
optimized for HDL code generation. The block provides a hardware-friendly interface with input and
output control signals. To provide a cycle-accurate simulation of the generated HDL code, the block
models architectural latency including pipeline registers and resource sharing.

The block accepts scalar or vector input and outputs a scalar or vector depending on the
interpolation factor and the number of cycles between input samples. The block implements a
polyphase decomposition with InterpolationFactor subfilters. The filter can implement a serial
architecture if there is regular spacing between input samples.

The block provides two filter structures. The direct form systolic architecture provides an
implementation that makes efficient use of Intel and Xilinx DSP blocks. This architecture can be fully-
parallel or serial. To use a serial architecture, the input samples must be spaced out with a regular
number of invalid cycles between the valid samples. The direct form transposed architecture is a fully
parallel implementation that is suitable for FPGA and ASIC applications. For a filter implementation
that matches multipliers, pipeline registers, and pre-adders to the DSP configuration of your FPGA
vendor, specify your target device when you generate HDL code.

All filter structures optimize hardware resources by sharing multipliers for symmetric or
antisymmetric filters and by removing the multipliers for zero-valued coefficients such as in half-band
filters and Hilbert transforms.

Ports
Input

data — Input data
real or complex scalar or vector

Input data, specified as a real or complex scalar or vector. The vector size must be less than or equal
to 64. When the input data type is an integer type or a fixed-point type, the block uses fixed-point
arithmetic for internal calculations.

The software supports double and single data types for simulation, but not for HDL code
generation.

Data Types: fixed point | single | double |int8 | intl6 | int32 |uint8 | uintl6 |uint32
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valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.

Data Types: Boolean

reset — Clears internal states
scalar

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select Enable reset input port.

Data Types: Boolean

Output

data — Interpolated output data
real or complex scalar or vector

Interpolated output data, returned as a real or complex scalar or vector. The vector size is InputSize *
InterpolationFactor. When NumCycles is greater than InterpolationFactor, scalar output samples are
spaced with floor (NumCycles/InterpolationFactor) invalid cycles, and the output valid
signal indicates which samples are valid after interpolation.

When the input data type is a floating-point type, the output data inherits the data type of the input
data. When the input data type is an integer type or a fixed-point type, the Output parameter on the
Data Types tab controls the output data type.

Data Types: fixed point |single |double|int8 | intl1l6 | int32 | uint8 | uint16 | uint32

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.

Data Types: Boolean

ready — Indicates block is ready for new input data
scalar

Control signal that indicates that the block is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the block ignores any input data in the next time step.

Data Types: Boolean
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Parameters

Main

Coefficients — FIR filter coefficients

firl(35,0.4) (default) | real- or complex-valued vector

FIR filter coefficients, specified as a real- or complex-valued vector. You can specify the vector as a
workspace variable or as a call to a filter design function. When the input data type is a floating-point
type, the block casts the coefficients to the same data type as the input. When the input data type is
an integer type or a fixed-point type, you can set the data type for the coefficients on the Data Types
tab.

Example: firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]) defines coefficients by using a linear-phase
filter design function.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32
Filter structure — HDL filter architecture
Direct form systolic (default) | Direct form transposed

Specify the HDL filter architecture as one of these structures:

* Direct form systolic — This architecture provides a parallel or partly serial filter
implementation that makes efficient use of Intel and Xilinx DSP HDL blocks. For a partly serial
implementation, specify a value greater than 1 for the Minimum number of cycles between
valid input samples parameter. You cannot use frame-based input with the partly serial
architecture.

* Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications.

The block implements a polyphase decomposition filter by using Discrete FIR Filter blocks. Each filter
phase shares resources internally where coefficients and serial options allow. For architecture details,
see “FIR Filter Architectures for FPGAs and ASICs”. When you use a partly-serial systolic
architecture and Minimum number of cycles between valid input samples is larger than the
filter length divided by the interpolation factor, the block interleaves each phase of coefficients over a
single FIR filter to share resources between phases.

Interpolation factor — Interpolation factor
2 (default) | integer greater than two

Specify an integer interpolation factor greater than two. The output vector size is InputSize *
InterpolationFactor. The output vector size must be less than 64 samples.

Minimum number of cycles between valid input samples — Serialization requirement for input
timing

1 (default) | positive integer

Serialization requirement for input timing, specified as a positive integer. This parameter represents
N, the minimum number of cycles between valid input samples. When you set Minimum number of
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cycles between valid input samples greater than the filter length, L, and the input and coefficients
are both real, the filter uses a single multiplier.

Because the block applies coefficient optimizations before serialization, the sharing factor of the final
filter can be lower than the number of cycles that you specified.

Dependencies
To enable this parameter, set Filter structure to Direct form systolic.

You cannot use frame-based input with Minimum number of cycles between valid input samples
greater than 1.

Data Types

Rounding mode — Rounding mode for type-casting the output

Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Rounding mode for type-casting the output to the data type specified by the Output parameter. When
the input data type is floating point, the block ignores this parameter. For more details, see
“Rounding Modes”.

Saturate on integer overflow — Overflow handling for type-casting the output

off (default) | on

Overflow handling for type-casting the output to the data type specified by the Output parameter.
When the input data type is floating point, the block ignores this parameter. For more details, see
“Overflow Handling”.

Coefficients — Data type of filter coefficients

Inherit: Same word length as input (default) | <data type expression>

The block casts the filter coefficients to this data type. The quantization rounds to the nearest
representable value and saturates on overflow. When the input data type is floating point, the block
ignores this parameter.

The recommended data type for this parameter is Inherit: Same word length as input.
The block returns a warning or error if either of these conditions occur.

* The coefficients data type does not have enough fractional length to represent the coefficients
accurately.

» The coefficients data type is unsigned, and the coefficients include negative values.

Output — Data type of filter output

Inherit: Inherit via internal rule (default) | Inherit: Same word length as input |
<data type expression>

The block casts the output of the filter to this data type. The quantization uses the settings of the
Rounding mode and Overflow mode parameters. When the input data type is floating point, the
block ignores this parameter.
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The block increases the word length for full precision inside each filter tap and casts the final output
to the specified type. The maximum final internal data type (WF) depends on the input data type (WI),
the coefficient data type (WC), and the number of coefficients (L) and is given by

WF = WI + WC + ceil(log2(L)).

Because the coefficient values limit the potential growth, usually the actual full-precision internal
word length is smaller than WF.

Control Ports
Enable reset input port — Option to enable reset input port
off (default) | on

Select this check box to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Use HDL global reset — Option to connect data path registers to generated HDL global reset signal
off (default) | on

Select this check box to connect the generated HDL global reset signal to the data path registers.
This parameter does not change the appearance of the block or modify simulation behavior in
Simulink. When you clear this check box, the generated HDL global reset clears only the control path
registers. The generated HDL global reset can be synchronous or asynchronous depending on the
HDL Code Generation > Global Settings > Reset type parameter in the model Configuration
Parameters.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Algorithms

The block implements a polyphase filter bank where the filter coefficients are decomposed into
InterpolationFactor subfilters. If the filter length is not divisible by the Interpolation factor
parameter value, then the block zero-pads the coefficients. When your input is regularly spaced, with
two or more cycles between valid samples, as indicated by the Minimum number of cycles
between valid input samples parameter, the filter can share multiplier resources in time.

This flow chart shows which filter architectures result from your parameter settings. It also shows the
number of multipliers used by the filter implementation. The filter architecture depends on the input
frame size, V, the interpolation factor, R, the number of cycles between valid input samples, N, and
the number of filter coefficients, L. The architectures are in order from lowest resource use on the
left, to higher resources on the right. The higher resource architectures are trading off resource use
for higher throughput. Each architecture is described below the flow chart.

The number of multipliers shown in the flow chart is for filters with real input and real coefficients.
For complex input, the filter uses three times as many multipliers.
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* Architectures 1 and 2 — Serial polyphase interleaved filter bank.

When NumCycles is greater than FilterLength/InterpolationFactor, the block interleaves each
phase of coefficients over a single FIR filter to share resources between phases. The single FIR
filter has a serial architecture and uses the NumCycles value to share multipliers over time. A
partly serial filter uses FilterLength/NumCycles multipliers. When NumCycles is greater than the
filter length, the filter becomes fully serial and uses one multiplier. The diagram shows a filter
with an interpolation factor of 4 and at least FilterLength/4 cycles between input samples.

1-123



1 Blocks

coeff

n(1:4end) |
h(24end |
h(3:4end) |
h{4:4:end)

v

FIR >
data data

N=L/4 Nout = N/4

* Architectures 3 and 4 — Partly serial polyphase filter bank.

Each subfilter of the polyphase decomposition uses the NumCycles value to implement a serial
filter. When NumCycles is FilterLength/InterpolationFactor, each phase uses a single multiplier,
for a total of InterpolationFactor multipliers. The output is a vector if NumCycles <
InterpolationFactor and a scalar if NumCycles = InterpolationFactor.

The diagram shows a polyphase filter bank with scalar input and InterpolationFactor is set to 4.
NumCycles is 2. Each subfilter is partly serial and has FilterLength/(4*2) multipliers, for a total of
FilterLength/2 multipliers. The output is a vector because the interpolation factor is larger than
the number of cycles between input samples.

hi1:4:end)
: FIR:1 —
data datata
N=2
h{2:4:end)
[N 4 FIR2 >
datalb
hi{3:4:end) Feshape >
‘], data[1:2]
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dataza
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Architectures 5 and 6 — Fully parallel polyphase filter bank.

The diagram shows the polyphase filter bank with scalar input and InterpolationFactor is set to 4.
The NumCycles value is 1, so the output must be a vector and each subfilter contributes one
sample to the output vector. Each subfilter is a fully parallel FIR filter, with L/4 multipliers, for a

total of L multipliers.

h{1:4:end)
3 FIR1 —»
data data[1]
h{2:4:end)
e FIR2
data[2]
h{3:4:end)
P FIR3
data[3]
h{4.4:end)
— FIR4 —
data[4]

Feshape

data[1:4]

L,
o

When the input is a vector, each subfilter is a frame-based filter that contains one parallel filter for
each input sample. This diagram shows the polyphase filter bank for an input vector of two values

and InterpolationFactor is set to 4. Each of the four subfilters generates two samples of the output
vector and contains L/4*2 multipliers, for a total of L*2 multipliers.
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Each subfilter is implemented with a Discrete FIR Filter block. For architecture details, see “FIR
Filter Architectures for FPGAs and ASICs”.

Performance

This table shows the post-synthesis resource utilization for the HDL code generated for the default
FIR interpolation filter using scalar input, an interpolation factor of two, 16-bit input, and 16-bit
coefficients. The synthesis targets a Xilinx ZC-706 (XC7Z045ffg900-2) FPGA. The Global HDL reset
type parameter is Synchronous, and the Minimize clock enables parameter is selected. The reset
port is disabled, so only the control path registers are connected to the generated global HDL reset.

Resource Uses
LUT 18
FF 353
BRAM 0
Xilinx LogiCORE DSP48 72

After place and route, the maximum clock frequency of the design is 455 MHz.

For the same filter configuration but with a four-element input vector, the filter uses these resources.

Resource

Uses

LUT

2080
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Resource Uses
FF 6416
BRAM 0
Xilinx LogiCORE DSP48 288

After place and route, the maximum clock frequency of the design is 385 MHz.

For a design with scalar input, an interpolation factor of four, and Minimum number of cycles
between valid input samples set to four, the filter uses these resources. You can see the effect of

sharing filter resources over the invalid cycles between input samples.

Resource Uses
LUT 1100
FF 2258
BRAM 0
Xilinx LogiCORE DSP48 24

After place and route, the maximum clock frequency of the design is 540 MHz.

Version History
Introduced in R2022a

R2022b: Increased resource sharing for FIR Interpolator

Starting in R2022b, when Minimum number of cycles between valid input samples is greater
than the filter length, the block interleaves the coefficients to share multipliers between the
polyphase branches. To implement the filter with the minimum number of multipliers, set Minimum
number of cycles between valid input samples to Inf.

In R2022a, the minimum number of multipliers that a partly serial FIR interpolator could use was
InterpolationFactor multipliers, which occurred when Minimum number of cycles between valid
input samples was equal to the filter length. Increasing Minimum number of cycles between
valid input samples above the filter length resulted in no additional resource sharing.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.
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HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays

peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also

Blocks

FIR Decimator | Discrete FIR Filter

Objects

dsphdl.FIRInterpolator
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FIR Rate Converter

Upsample, filter, and downsample input signal

Libraries:
Ydata deta DSP HDL Toolbox / Filtering
FR R;EgiL\rerter
Hvalid walid [
Description

The FIR Rate Converter block upsamples, filters, and downsamples input signals. It is optimized for
HDL code generation and operates on one sample of each channel at a time. The block implements a
polyphase architecture to avoid unnecessary arithmetic operations and high intermediate sample
rates.

x[k] —»@—» FIR Filter —»@—o vinl

The block upsamples the input signal by an integer factor of L, applies it to a FIR filter, and
downsamples the input signal by an integer factor of M.

You can use the input and output control ports to pace the flow of samples. In the default
configuration, the block uses input and output valid control signals. For additional flow control, you
can enable a ready output signal.

The ready output port indicates that the block can accept a new input data sample on the next time
step. When L = M, you can use the ready signal to achieve continuous output data samples. If you
apply a new input sample after each time the block returns ready signal as 1, the block returns a
data output sample with the output valid signal set to 1 on every time step.

When you disable the ready port, you can apply a valid data sample only every ceil(L/M) time
steps. For example, if:

* L/M = 4/5, then you can apply a new input sample on every time step.
* L/M = 3/2, then you can apply a new input sample on every other time step.

Ports

Input

data — Input data sample
scalar | row vector

Input data sample, specified as a scalar, or as a row vector in which each element represents an
independent channel. The block accepts real or complex data.
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The software supports double and single data types for simulation, but not for HDL code
generation.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.

You can apply a valid data sample every ceiling(L/M) time steps.

Data Types: Boolean
Output

data — Output data sample
scalar | row vector

Output data sample, returned as a scalar or a row vector in which each element represents an
independent channel.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.

Data Types: Boolean

ready — Indicates block is ready for new input data
scalar

Control signal that indicates that the block is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the block ignores any input data in the next time step.

Dependencies

To enable this port, select the Enable ready output port check box.
Data Types: Boolean

Parameters
Main
Interpolation factor — Interpolation factor

3 (default) | positive integer
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Specify a factor by which the block interpolates the input data sample.
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64

Decimation factor — Decimation factor
2 (default) | positive integer

Specify a factor by which the block decimates the input data sample.
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

FIR filter coefficients — FIR filter coefficients

firpm(70, [0 0.28 0.32 1],[1 1 O 0]) (default) | row vector

Specify a row vector of coefficients in descending powers of 2.

Note You can generate filter coefficients using Signal Processing Toolbox™ filter design functions
(such as firl). Design a lowpass filter with normalized cutoff frequency no greater than
min(1/L, 1/M). The block initializes internal filter states to zero.

Data Types

Rounding mode — Rounding mode for fixed-point operation

Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Select a rounding mode for fixed-point operations. For more information, see Rounding mode.
Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

+ off — Overflows wrap to the appropriate value that data type can represent. For example,
because 130 does not fit in a signed 8-bit integer, it wraps to -126.

* on — Overflows saturate to either the minimum or maximum value that data type can represent.
For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Coefficients — FIR filter coefficients data type
fixdt(1,16,16) (default)

FIR filter coefficients data type, specified as a fixdt(s,wl, fl) object with signedness, word
length, and fractional length properties.

Output — Data type of output data sample

Inherit: Same word length as input (default) | Inherit via internal rule |
fixdt(s,wl, fl)

Specify the data type for the output data samples.
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Control Ports
Enable ready output port — Option to enable ready control signal
off (default) | on

Select this parameter to enable the ready port.

Algorithms

The FIR Rate Converter block implements a fully parallel polyphase filter architecture. The diagram
shows where the block casts the data types based on your configuration.

InputDataType CoefficientsDataType ProductDataType AccumulatorDataType QOutputDataType
: : (full precision) (full precision) :

data v coeff
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b
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»—
=]
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delay
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&
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¥
h 4
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Delay

Because the block models HDL pipeline latency, an initial delay of several time steps exists before the
block returns the first valid output data sample. The latency depends on the filter coefficients and the
resampling factors. To determine the latency from the first input data sample to the first output data
sample, measure the cycles between asserting the input valid signal and the output valid signal
going high.

Performance

For an example of design performance, generate HDL for the block as configured in the “Control Data
Rate Using Ready Signal” example. The example filter resamples at 5/2, and uses a symmetric 71-tap
filter. The input samples and filter coefficients are 16 bits wide. The design is targeted to a Xilinx
Virtex-6 FPGA, using Xilinx ISE synthesis and place and route tools.

After placement and routing, the design achieves 535 MHz clock frequency and uses these resources
of the FPGA device.

592
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Xilinx LogiCORE DSP48 15
Block RAM (16K) 0

Performance of the synthesized HDL code varies depending on your filter coefficients, FPGA target,
and synthesis options.

Version History
Introduced in R2015b

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named FIR Rate Conversion HDL Optimized and was included in the
DSP System Toolbox DSP System Toolbox HDL Support library.

R2022a: Remove request port
Behavior changed in R2022a

In previous releases, the block provided an optional request port. This port is no longer available.
For an alternate way to control the data rate in your model, see “Control Data Rate Using Ready
Signal”.

R2022a: Synchronous ready signal
Behavior changed in R2022a

The ready signal is now pipelined at the output of the block. In previous releases, the ready output
signal was direct feedthrough without an output pipeline register.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
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HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays

peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also

Blocks

FIR Rate Conversion

Objects

dsphdl.FIRRateConverter
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FIR Rate Converter (Obsolete)

Upsample, filter, and downsample input signal (with request port)

Description

The FIR Rate Converter block upsamples, filters, and downsamples input signals. It is optimized for
HDL code generation and operates on one sample of each channel at a time. The block implements a
polyphase architecture to avoid unnecessary arithmetic operations and high intermediate sample
rates.

x[K] 4@—. FIR Filter 4»@—- yinl

The block upsamples the input signal by an integer factor of L, applies it to a FIR filter, and
downsamples the input signal by an integer factor of M.

You can use the input and output control ports for pacing the flow of samples. In the default
configuration, the block uses input and output valid control signals. The block has a request port to
control the output rate. For input flow control, you can enable a ready output signal.

data > p data
FIR Kernel
valid 4
: — valid
Controller - ready
1 e
[+
request

The ready output port indicates that the block can accept a new input data sample on the next time
step. When L = M, you can use the ready signal to achieve continuous output data samples. If you
apply a new input sample after each time the block returns ready signal as 1, the block returns a
data output sample with the output valid signal set to 1 on every time step.

When you disable the ready port, you can apply a valid data sample only every ceil(L/M) time
steps. For example, if:

* L/M = 4/5, then you can apply a new input sample on every time step.
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* L/M = 3/2, then you can apply a new input sample on every other time step.

The block returns the next output sample one cycle after the request signal is 1 and a valid output
sample is available. When no new data is available, block sets the output valid signal to 0.

You can connect the request input port to the ready output port of a downstream block.

Ports
Input

data — Input data sample
scalar | row vector

Input data sample, specified as a scalar, or as a row vector in which each element represents an
independent channel. The block accepts real or complex data.

The software supports double and single data types for simulation, but not for HDL code
generation.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
fixed point

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.

You can apply a valid data sample every ceiling(L/M) time steps.
Data Types: Boolean

request — Request control signal
scalar

When the request port is 1, and an output data sample is available, on the next cycle the block
returns that output data sample on the output data port and sets the output valid signal to 1. When
no new data is available, the block sets the output valid signal to 0. When the request port is 0, the
block holds available data until the request port is set to 1.

You can connect the request input port to the ready output port of a downstream block.

Data Types: Boolean
Output

data — Output data sample
scalar | row vector

Output data sample, returned as a scalar or a row vector in which each element represents an
independent channel.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point
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valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),

the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.

Data Types: Boolean

ready — Indicates block is ready for new input data
scalar

Control signal that indicates that the block is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the block ignores any input data in the next time step.

You can connect the ready output port to the request input port of an upstream block.

Dependencies

To enable this port, select the Enable ready output port check box.
Data Types: Boolean

Parameters

Main

Interpolation factor — Interpolation factor
3 (default) | positive integer

Specify a factor by which the block interpolates the input data sample.
Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

Decimation factor — Decimation factor
2 (default) | positive integer

Specify a factor by which the block decimates the input data sample.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64

FIR filter coefficients — FIR filter coefficients
firpm(70, [0 0.28 0.32 1]1,[1 1 O 0]) (default) | row vector

Specify a row vector of coefficients in descending powers of 2.

Note You can generate filter coefficients using Signal Processing Toolbox filter design functions
(such as firl). Design a lowpass filter with normalized cutoff frequency no greater than
min(1/L,1/M). The block initializes internal filter states to zero.
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Data Types

Rounding mode — Rounding mode for fixed-point operation

Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Select a rounding mode for fixed-point operations. For more information, see Rounding mode.
Saturate on integer overflow — Method of overflow action

off (default) | on

Specify whether overflows saturate or wrap.

+ off — Overflows wrap to the appropriate value that data type can represent. For example,
because 130 does not fit in a signed 8-bit integer, it wraps to -126.

* on — Overflows saturate to either the minimum or maximum value that data type can represent.
For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Coefficients — FIR filter coefficients data type
fixdt(1,16,16) (default)

FIR filter coefficients data type, specified as a fixdt (s,wl, fl) object with signedness, word
length, and fractional length properties.

Output — Data type of output data sample

Inherit: Same word length as input (default) | Inherit via internal rule |
fixdt(s,wl,fl)

Specify the data type for the output data samples.

Control Ports

Enable ready output port — Option to enable ready control signal
off (default) | on

Select this parameter to enable the ready port.

Algorithms

The FIR Rate Converter block implements a fully parallel polyphase filter architecture. The diagram
shows where the block casts the data types based on your configuration.
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Delay

Because the block models HDL pipeline latency, an initial delay of several time steps exists before the
block returns the first valid output data sample. The latency depends on the filter coefficients and the
resampling factors. To determine the latency from the first input data sample to the first output data
sample, measure the cycles between asserting the input valid signal and the output valid signal
going high.

Performance

For an example of design performance, generate HDL for the block as configured in the “Control Data
Rate Using Ready Signal” example. The example filter resamples at 5/2, and uses a symmetric 71-tap
filter. The input samples and filter coefficients are 16 bits wide. The design is targeted to a Xilinx
Virtex-6 FPGA, using Xilinx ISE synthesis and place and route tools.

After placement and routing, the design achieves 535 MHz clock frequency and uses these resources
of the FPGA device.

LUT 592
FFS 979
Xilinx LogiCORE DSP48 15
Block RAM (16K) 0

Performance of the synthesized HDL code varies depending on your filter coefficients, FPGA target,
and synthesis options.

Version History
Introduced in R2015b

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a
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Before R2022a, this block was named FIR Rate Conversion HDL Optimized and was included in the
DSP System Toolbox DSP System Toolbox HDL Support library.

R2022a: Remove request port in future release
Behavior changed in R2022a

The request port on the FIR Rate Converter block is no longer supported. Existing instances of the
FIR Rate Converter block that use the request port are forwarded to this block, which has a
nonoptional request port. This block will be removed in a future release.

Instead, use the FIR Rate Converter block without the request port, and control the input data rate
by using a FIFO outside the block. See “Control Data Rate Using Ready Signal”.

R2022a: One cycle latency between request and validOut
Behavior changed in R2022a

This block has a register on the request input port. This register means there is one cycle latency
between setting request to 1 (true) and the block returning data on the dataOut and validOut
ports.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).
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See Also

Blocks
FIR Rate Converter

Objects
dsphdl.FIRRateConverter
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Complex to Magnitude-Angle

Compute magnitude and phase angle of complex signal using CORDIC algorithm

Libraries:
ot Ui Arge A DSP HDL Toolbox / Math Functions

valid

data

valid

Description

The Complex to Magnitude-Angle block computes the magnitude and phase angle of a complex signal
and provides hardware-friendly control signals. To achieve an efficient HDL implementation, the
block uses a pipelined Coordinate Rotation Digital Computer (CORDIC) algorithm.

You can use this block to implement operations such as atan2 in hardware.

Ports
Input

data — Complex input signal
scalar | vector

Complex input signal, specified as a scalar, a column vector representing samples in time, or a row
vector representing channels. Using vector input increases data throughput while using more
hardware resources. The block implements the conversion logic in parallel for each element of the
vector. The input vector can contain up to 64 elements.

The software supports double and single data types for simulation, but not for HDL code
generation.

Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64 |
fixed point

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.

Data Types: Boolean
Output

Magnitude — Magnitude of the input signal
scalar | vector

Magnitude of the input signal, returned as a scalar, a column vector representing samples in time, or
a row vector representing channels. The dimensions of this port match the dimensions of the input
data port.



Complex to Magnitude-Angle

Dependencies

To enable this port, set the Output format parameter to Magnitude and Angle or Magnitude.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fixdt([],N,0)

Angle — Angle of the input signal
scalar | vector

Angle of the input signal, returned as a scalar, a column vector representing samples in time, or a row
vector representing channels. The dimensions of this port match the dimensions of the input data
port.

Dependencies

To enable this port, set the Output format parameter to Magnitude and Angle or Angle.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixdt([],N,0)

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the Magnitude and/or Angle ports. When valid is 0 (false), the
values from the Magnitude and/or Angle ports are not valid.

Data Types: Boolean

Parameters
Number of iterations source — Source of number of iterations

Auto (default) | Property

* To set the number of iterations to input WL — 1, select Auto. If the input is of data type double or
single, the number of iterations is set to 16, by default.

» To specify the number of iterations by using Number of iterations parameter, select Property.

Number of iterations — Number of CORDIC iterations
positive integer

The number of iterations must be less than or equal to input WL — 1. The latency of the block
depends on the number of iterations performed. For information about latency, see “Latency” on page
1-148.

Dependencies
To enable this parameter, set Number of iterations source to Property.

Output format — Output signal format

Magnitude and Angle (default) | Magnitude | Angle

Use this parameter to specify which output ports are enabled.
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* To enable the Magnitude and Angle output ports, select Magnitude and Angle (default).
* To enable the Magnitude output port and disable the Angle output port, select Magnitude.
* To enable the Angle output port and disable the Magnitude output port, select Angle.

Angle format — Output angle format

Normalized (default) | Radians

* To return the Angle output as a fixed-point value that normalizes the angles in the range [-1,1],
select Normalized. For more information see “Normalized Angle Format” on page 1-147.

* To return the Angle output as a fixed-point value in the range [-1, 1], select Radians. When using
this block to implement the atan2 function, set this parameter to Radians.

Scale output — Scales output
on (default) | of f
Select this parameter to multiply the Angle output by the inverse of the CORDIC gain factor. The

block implements this gain factor with either CSD logic or a multiplier, according to the Scaling
method parameter.

Note If you clear this parameter and apply the CORDIC gain elsewhere in your design, you must
exclude the n/4 term. Because the quadrant mapping algorithm replaces the first CORDIC iteration
by mapping inputs onto the angle range [0, /4], the initial rotation does not contribute a gain term.
The gain factor is the product of cos (atan(2") ), for n from 1 to Number of iterations - 1.

Scaling method — Implementation of CORDIC gain scaling
CSD (default) | Multipliers

When you set this parameter to CSD, the block implements the CORDIC gain scaling by using a shift-
and-add architecture for the multiply operation. This implementation uses no multiplier resources
and may increase the length of the critical path in your design. When you select Multipliers, the
block implements the CORDIC gain scaling with a multiplier and increases the latency of the block by
four cycles.

Dependencies

To enable this parameter, select the Scale output parameter.

Algorithms

CORDIC Algorithm

The CORDIC algorithm is a hardware-friendly method for performing trigonometric functions. It is an
iterative algorithm that approximates the solution by converging toward the ideal point. The block

uses CORDIC vectoring mode to iteratively rotate the input onto the real axis.

Givens method for rotating a complex number x+iy by an angle 6 is as follows. The direction of
rotation, d, is +1 for counterclockwise and —1 for clockwise.
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Xy = xcosO — dysinf
Vr = ycosh + dxsinf

For a hardware implementation, factor out the cos to leave a tanf term.

Xr = cosO(x — dytan0)
Vr = cosO(y + dxtanb)

To rotate the vector onto the real axis, choose a series of rotations of 8, so that tan6, = 2~". Remove
the cosO term so each iterative rotation uses only shift and add operations.

Rxp=Xp—1=dpyp-12""

Ryn =Yn-1+dpxy - 12—n

Combine the missing cosf terms from each iteration into a constant, and apply it with a single
multiplier to the result of the final rotation. The output magnitude is the scaled final value of x. The
output angle, z, is the sum of the rotation angles.

Xr = (c0s6pcosh...cos0,)Rxn
N

2= dnby
0

Modified CORDIC Algorithm

The convergence region for the standard CORDIC rotation is =+99.7°. To work around this limitation,
before doing any rotation, the block maps the input into the [0, /4] range using this algorithm.

if abs(x) > abs(y)

input_mapped = [abs(x), abs(y)];
else

input_mapped = [abs(y), abs(x)];
end

At each iteration, the block rotates the vector towards the real axis. The rotation is counterclockwise
when y is negative, and clockwise when y is positive.

Quadrant mapping saves hardware resources and reduces latency by reducing the number of
CORDIC pipeline stages by one. The CORDIC gain factor, Kn, therefore does not include the n=0, or
cos(r/4)term.

K, = cos...cos0;,, = c0s(26.565) - cos(14.036) - cos(7.125) - cos(3.576)

After the CORDIC iterations are complete, the block adjusts the angle back to its original location.
First it adjusts the angle to the correct side of /4.

if abs(x) > abs(y)
angle_unmapped = CORDIC out;
else
angle_unmapped
end

(pi/2) - CORDIC out;

Then, the block flips the angle to the original quadrant.
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if (x < 0)
if (y < 0)
output _angle
else
output _angle
else
if (y<0)
output _angle

Architecture

- pi + angle unmapped;

pi - angle unmapped;

-angle_unmapped;

The block generates a pipelined HDL architecture to maximize throughput. Each CORDIC iteration is
done in one pipeline stage. The gain factor, if enabled, is implemented with canonical signed digit
(CSD) logic by default. Set the Scaling method parameter to Multipliers to implement the gain
factor with a multiplier.

If you use vector input, this block replicates this architecture in parallel for each element of the

vector.

”

Quadrant
Yo —— Mapper

CORDIC 1

Quadrant _D__. Iy

Correction

The following table shows Magnitude and Angle output word length (WL), for particular input word
length (WL). FL stands for fractional length used in fixed-point representation.

Input Word Length

Output Magnitude Word Length

fixdt(0,WL,FL)

fixdt(0,WL + 2,FL)

fixdt(1,WL,FL)

fixdt(1,WL + 1,FL)

Input Word Length

Output Angle Word Length

fixdt([ ], WL,FL)

Radians

fixdt(1,WL + 3,WL)

Normalized

fixdt(1,WL + 3,WL+2)

The CORDIC logic at each pipeline stage implements one iteration. For each pipeline stage, the shift
and angle rotation are constants.
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Cirection

Cecision

When you set Output format to Magnitude, the block does not generate HDL code for the angle
accumulation and quadrant correction logic.

Normalized Angle Format

This format normalizes the fixed-point radian angle values around the unit circle. This use of bits can
be more efficient than the use of the range [0, 2n] radians. Also this normalized angle format enables
wraparound of angle at 0 or 2m without additional detect and correct logic.

For example, representing the angle with 3 bits results in these normalized values.
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Imaginary

100 000
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¥

Real

The block normalizes the angles across [0, /4] and maps them to the correct octant at the end of the
calculation.

Latency

When the valid input is applied, the block returns valid output after Number of iterations + 4
cycles. The latency is displayed on the block mask.

When you set the Number of iterations source parameter to Property, the block shows the
latency immediately. When you set Number of iterations source to Auto, the block calculates the
latency based on the input port data type and displays the latency when you update the model.

When you set the Number of iterations source parameter to Auto, the number of iterations is
input WL — 1, and the latency is input WL + 3. If the input is of data type double or single, the
number of iterations is 16, and the latency is 20.

Note When you set the Scaling method parameter to Multipliers, the block latency increases by
four cycles.

Performance

Performance was measured for the default configuration, with output scaling disabled and
fixdt(1,16,12) input. When the generated HDL code is synthesized into a Xilinx ZC706
(XC7Z045FFG900-2) FPGA, the design achieves 350 MHz clock frequency. It uses the following
resources.

Resource Number Used
LUT 891

FFS 899

Xilinx LogiCORE DSP48 0
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Resource Number Used
Block RAM (16K) 0
Critical path 2.792 ns

When you use a multiplier for the CORDIC gain scaling, the design uses one DSP block and has a
shorter critical path. The critical path difference is not significant at this number of bits, but as the
size of the data increases, the critical path of the CSD implementation rises faster than the critical

path of the multiplier.

Resource Number Used
LUT 808

FFS 956

Xilinx LogiCORE DSP48 1

Block RAM (16K) 0

Critical path 2.574 ns

Performance of the synthesized HDL code varies depending on your target and synthesis options.
When you use vector input, the resource usage is about VectorSize times the scalar resource usage.

Version History
Introduced in R2014b

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named Complex to Magnitude-Angle HDL Optimized and was included
in the DSP System Toolbox DSP System Toolbox HDL Support library.

R2022a: Option to use multiplier for scale factor

In previous releases, the block implemented the CORDIC gain for hardware by using shift-and-add
logic. To use a multiplier, set the Scaling method parameter to Multipliers. To use shift-and-add
logic, set this parameter to CSD.

R2021b: High-throughput interface

The block accepts and returns a column vector of elements that represent samples in time. The input
vector can contain up to 64 samples.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.
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HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration option that affect HDL implementation and synthesized
logic.
HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

See Also

Complex to Magnitude-Angle | dsphdl.ComplexToMagnitudeAngle | atan2

Topics
“HDL QAM Transmitter and Receiver” (Communications Toolbox)
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Biquad Filter

Biquadratic IIR (SOS) filter

Libraries:
3 data data p DSP HDL Toolbox / Filtering

Biquad Filter
Latency = —

Hvalid valid [

Description

A biquad filter is a form of infinite-impulse response (IIR) filter where the numerator and denominator
are split into a series of second-order sections connected by gain blocks. This type of filter can
replace a large FIR filter that uses an impractical amount of hardware resources. Designs often use
biquad filters as DC blocking filters or to meet a specification originally implemented with an analog
filter, such as a pre-emphasis filter.

Ports
Input

data — Input data
scalar or column vector of real values

Input data, specified as a scalar or column vector of real values. When the input has an integer or
fixed-point data type, the block uses fixed-point arithmetic for internal calculations.

Vector input is supported only when you set Filter structure to Pipelined feedback form. The
block accepts vectors of up to 64 samples, but large vector sizes can make the calculation of internal
data types challenging. Vector sizes of up to 16 samples are practical for hardware implementation.

When you set Filter structure to Direct form I fully serial, the block has an output ready
signal that indicates when the block is ready for new input. You apply input data only when the output
ready signal is 1 (true). Your design can react to the ready signal to provide the next input sample,
or you can space your input data with enough cycles in between to process each sample. The block
icon displays the cycles required to process one sample.

The software supports double and single data types for simulation, but not for HDL code
generation.

Data Types: fixed point |single |double|int8 | intl6 | int32 | uint8 | uint16 |uint32

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.

Data Types: Boolean
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Output

data — Filtered output data
scalar or column vector of real values

Filtered output data, returned as a scalar or column vector of real values. The output dimensions
match the input dimensions. When the input data type is a floating-point type, the output data
inherits the data type of the input data. When the input data type is an integer type or a fixed-point
type, the Output parameter on the Data Types tab controls the output data type.

Data Types: fixed point |single |double|int8 | intl1l6 | int32 | uint8 | uint16 | uint32

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.

Data Types: Boolean

ready — Indicates block is ready for new input data
scalar

Control signal that indicates the block is ready for new input data sample on the next cycle. When
ready is 1 (true), you can specify the data and valid inputs for the next time step. When ready is 0
(false), the block ignores any input data in the next time step.

When using the fully serial architecture, the block processes one sample at a time. If your design
waits for this block to return ready set to 0 (false) before setting the input valid to 0 (false), then
one additional cycle of input data arrives at the port. The block stores this additional data while
processing the current data, and does not set ready to 1 (true) until your model processes the
additional input data.

Dependencies

To enable this port, set Filter structure to Direct form I fully serial.

Data Types: Boolean

Parameters
Main
Filter structure — HDL filter architecture

Direct form II (default) |Direct form II transposed |Pipelined feedback form |
Direct form I fully serial

Both the Direct form II andDirect form II transposed architectures are pipelined and
quantized to fit well into FPGA DSP blocks. The output of these filters matches the output of the DSP
System Toolbox System objects dsp.SOSFilter and dsp.FourthOrderSectionFilter. These
architectures minimize the number of multipliers used by the filter but have a critical path through
the feedback loop and sometimes cannot achieve higher clock rates. These architectures do not
support vector input.
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Pipelined feedback formimplements a pipelined architecture that uses more multipliers than
either direct-form II structure, but achieves higher clock rates after synthesis. Vector input is
supported only when you use Pipelined feedback form. The output of the pipelined filter is
slightly different than the DSP System Toolbox functions dsp.S0SFilter and
dsp.FourthOrderSectionFilter because of the timing of data samples applied in the pipelined
filter stages.

Direct form I fully serial implements a fully serial architecture that uses only one multiplier.
When you select this option, the block stores the numerator, denominator, and scale values in the
same ROM. You can control the data type of the ROM by using the Coefficients data type parameter.
When you select this architecture, the output ready port appears on the block. The ready signal
indicates when the block is ready for new input data. Apply input data only when ready is 1 (true).
This architecture does not support vector input.

Numerator coefficients of filter — Coefficients for numerator

[1,2,1] (default) | NumSections-by-3 matrix

Specify the numerator coefficients as a matrix of NumSections-by-3 values. NumSections is the
number of second-order filter sections. The block infers the number of filter sections from the size of
the numerator and denominator coefficients. The numerator coefficient and denominator coefficient
matrices must be the same size. The default filter has one section.

Denominator coefficients of filter — Coefficients for denominator

[1,.1,.2] (default) | NumSections-by-3 matrix

Specify the denominator coefficients as a matrix of NumSections-by-3 values. The block assumes the
first denominator coefficient of each section is 1.0. NumSections is the number of second-order filter
sections. The block infers the number of sections from the size of the numerator and denominator
coefficients. The numerator coefficient and denominator coefficient matrices must be the same size.
The default filter has one section.

Scale values of filter — Gain values applied before and after second-order filter sections

[1] (default) | vector of 1 to NumSections+1 values

Specify the gain values as a vector of up to NumSections+1 values. NumSections is the number of
second-order filter sections. The block infers the number of sections from the size of the numerator
and denominator coefficients. If the vector has only one value, the block applies that gain before the
first section. If you specify fewer values than there are filter sections, the block sets the remaining
section gain values to one. The diagram shows a 3-section filter and the locations of the four scale
values before and after the sections.

>

Implementing these gain factors outside the filter sections reduces the multipliers needed to
implement the numerator of the filter.

>

< SV,

Y ¥
O

1-153



1 Blocks

1-154

Data Types

Rounding mode — Rounding mode for type-casting the output

Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Rounding mode for type-casting the output and accumulator values to the data types specified by the
Output and Accumulator parameters. When the input data type is floating point, the block ignores
this parameter. For more details, see “Rounding Modes”.

Saturate on integer overflow — Overflow handling for type-casting the output

off (default) | on

Overflow handling for type-casting the output and accumulator values to the data types specified by
the Output and Accumulator parameters. When the input data type is floating point, the block
ignores this parameter. For more details, see “Overflow Handling”.

Numerator — Data type of numerator coefficients

Inherit: Same word length as first input (default) | <data type expression>

The block casts the numerator coefficients to this data type. The quantization rounds to the nearest
representable value and saturates on overflow. When the input data type is floating point, the block

ignores this parameter.

The block returns a warning if the data type of the coefficients does not have enough fractional
length to represent the coefficients accurately.

Dependencies

To enable this parameter, set Filter structure to Direct form II transposed, Direct form
II, or Pipelined feedback form.

Denominator — Data type of denominator coefficients

Inherit: Same word length as first input (default) | <data type expression>

The block casts the denominator coefficients to this data type. The quantization rounds to the nearest
representable value and saturates on overflow. When the input data type is floating point, the block

ignores this parameter.

The block returns a warning if the data type of the coefficients does not have enough fractional
length to represent the coefficients accurately.

Dependencies

To enable this parameter, set Filter structure to Direct form II transposed, Direct form
II, or Pipelined feedback form.

ScaleValues — Data type of gain

Inherit: Same word length as first input (default) | <data type expression>
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The block casts the scale values to this data type. The quantization rounds to the nearest
representable value and saturates on overflow. When the input data type is floating point, the block
ignores this parameter.

Dependencies

To enable this parameter, set Filter structure to Direct form II transposed, Direct form
II, or Pipelined feedback form.

Coefficients — Data type of coefficient memory when using serial filter architecture

Inherit: Same word length as first input (default) | <data type expression>

The block casts the numerator, denominator, and scale values to this data type and stores them in an
eight-element memory of this word length. The quantization rounds to the nearest representable
value and saturates on overflow. When the input data type is floating point, the block ignores this
parameter.

Dependencies
To enable this parameter, set Filter structure to Direct form I fully serial.

Accumulator — Data type of accumulator signals within each section

Inherit: Same as first input (default) | <data type expression>

The block casts the internal accumulator signals (as indicated in the diagrams in the “Algorithms” on
page 1-155 section) to this data type. The quantization uses the settings of the Rounding mode and
Saturate on integer overflow parameters. When the input data type is floating point, the block
ignores this parameter.

Output — Data type of filter output

Inherit: Inherit via internal rule (default) | Inherit: Same as first input | <data
type expression>

The block casts the output of the filter to this data type. The quantization uses the settings of the
Rounding mode and Saturate on integer overflow parameters. When the input data type is
floating point, the block ignores this parameter.

Algorithms

The direct form II and direct form II transposed architectures are pipelined and quantized to fit well
into FPGA DSP blocks. The architecture diagrams show the accumulator quantization points and
pipeline registers for the direct form II and direct form II transposed architectures. The dashed lines
indicate how the multiply-add operation fits into a DSP block on an FPGA.
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The transposed biquad filter implementations have a long critical path through the feedback loop
between poles z! and z2. They use the lowest number of multipliers but are not suitable for high-
speed applications.

The pipelined biquad architecture uses more multipliers but reduces the critical path and achieves
higher clock rates. The filter uses the Parhi method [1], which adds pipeline registers by increasing
the order of the denominator, and then compensates for the modified denominator by adding poles in
the numerator. The pipelined denominator uses order z# and 2 rather than 2! and 2. Since the
poles are less than one for a stable filter, the poles from the higher orders are smaller than the
starting values, which adds to filter stability.

To support frame-based (vector) input, the pipelined architecture increases the order of the
denominator to the power of the input size. A frame-based pipelined denominator uses z¥* and zNV*¢,
where N is the size of the input vector. The new numerator that compensates for the additional poles
in the denominator has 2*N*4 -1 coefficients. This implementation uses more resources but supports
high-throughput applications.

The fully serial architecture implements a direct form I architecture that uses one multiplier. The
block stores the coefficients and scale values in an eight-element ROM. The data buffer stores the
delay values for the input and output delay lines. The architecture diagram shows the quantization
points and pipeline registers. The multiplier uses full-precision data types. The data path is quantized
before the accumulator, and the resulting data type at the output of the accumulator also applies to
the data buffer. The multiplier is pipelined to fit to a DSP block on an FPGA, as shown by the dashed
line box.
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Performance

For a comparison of hardware resource use and synthesized clock speed of the three biquad filter
architectures, see “High Performance DC Blocker for FPGA”.

Version History
Introduced in R2022a

R2023a: Minimum resource architecture

The block now has the option to set the Filter structure parameter to Direct form I fully
serial to implement a fully serial architecture that uses only one multiplier. When you select this
option, the block stores the numerator, denominator, and scale values in the same ROM, and you can
control the data type of the ROM by using the Coefficient data type parameter. When you select this
architecture, the block has an output ready signal that indicates when the block is ready for new
input. You can apply input data only when the output ready signal is 1 (true).

References

[1] Chung, Jin-Gyun, and Keshab K. Parhi. Pipelined Lattice and Wave Digital Recursive Filters.
Boston: Springer US, 1996. https://doi.org/10.1007/978-1-4613-1307-6.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.
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HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also

Blocks
Discrete FIR Filter

Objects
dsphdl.BiquadFilter
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Downsampler

Downsample by removing data samples between input samples

Libraries:
. DSP HDL Toolbox / Signal Operations

*[2n]
Downsampler
Latency = —

Description

The Downsampler block downsamples an input signal by removing K-1 data samples between input
samples. The block supports these combinations of input and output data.

* Scalar input and scalar output
* Vector input and scalar output
* Vector input and vector output

The block provides an architecture suitable for HDL code generation and hardware deployment.

Ports
Input

data — Input data
scalar | column vector

Input data, specified as a scalar or a column vector with a length up to 64. The input data must be an
integer or a fixed point with a word length less than or equal to 128. The Downsample factor (K)
parameter must be an integer multiple of the input frame size.

The double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

valid — Valid input data indicator

01

Control signal that indicates whether the input data is valid. When this value is 1, the block accepts
the values on the data input port. When this value is 0, the block ignores the values on the data input
port.

Data Types: Boolean

reset — Option to clear internal states
0]1

Control signal that clears the internal states. When this value is 1, the block stops the current
calculation and clears its internal states. When this value is 0 and valid is 1, the block captures data
for processing.
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For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select the Enable reset input port parameter.

Data Types: Boolean
Output

data — Downsampled data
scalar | column vector

Downsampled data, returned as a scalar or a column vector with a length up to 1 to 64.

For a vector input, if the vector size is less than or equal to Downsample factor (K), the block
outputs scalar output.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

valid — Valid output data indicator
01

Control signal that indicates whether data from the data output port is valid. When this value is 1,
the block returns valid data on the data output port. When this value is 0, the values on the data
output port are not valid.

Data Types: Boolean

Parameters

Main

Downsample factor (K) — Downsampling factor

2 (default) | integer in the range [1, 2.716]

Specify the downsampling factor at which the block decreases the input sample rate.
Sample offset (0 to K-1) — Sample offset

0 (default) | integer in the range [0, 2.716 - 1]

Specify the sample offset in the range [0, Downsample factor (K) - 1].
Control Ports

Enable reset input port — Option to enable reset input port

off (default) | on

Select this parameter to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

For more reset considerations, see “Tips” on page 1-20.
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Algorithms
Latency
The latency of the block changes according to the length of the input and the sample offset. V is the

length of the input and O is the sample offset. The latency of block is 1 when you set the
Downsample factor (K) parameter to 1. This table shows the latency of the block.

Input Data Output Data |Latency in Clock Cycles
Scalar Scalar 2+0

Vector Scalar 1 + floor(0O/V)

Vector Vector 2

Scalar Input

This figure shows the output of the block with the default configuration, when you set the
Downsample factor (K) and Sample offset (0 to K-1) parameters to 2 and 0, respectively. The
latency of the block is two clock cycles and is calculated as 2 + O, where O is the sample offset.

Clock
Input Signals
»data
—  valid
Output Signals
»data

— vaiid

Cursor 1
Cursor2| 200s

This figure shows the output of the block when you set the Downsample factor (K) parameter value
to 8 and the Sample offset (0 to K-1) parameter value to 1. The latency of the block is three clock
cycles.

Clock
Input Signals
»data
—  valid
Output Signals

- data
—  valid

Cursor 1
Cursor2| 300s

Vector Input
This figure shows the output of the block for a two-element column vector input when you set the

Downsample factor (K) and Sample offset (0 to K-1) parameters to 2 and 0, respectively. The
latency of the block is one clock cycle.
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Clock
Input Signals
»data
—  valid
Output Signals

= data
—  vaid

Cursor 1
Cursor2| 100s

This figure shows the output of the block for an eight-element column vector input when you set the
Downsample factor (K) parameter value to 4 and the Sample offset (0 to K-1) parameter value to
1. The latency of the block is two clock cycles.

Clock
Input Signals
»data
— wvalid
Output Signals

»data
—  wvalid

Cursor 1 5
Cursor2| 200s

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. The
performance also varies based on the input data type.

This table shows the resource and performance data synthesis results of the block for a scalar input
and for a 16-element column vector input of type fixdt(1,16,0) when you set the Downsample
factor (K) and Sample offset (0 to K-1) parameters to 8 and 0, respectively. The generated HDL
targets the Xilinx Zyng- 7000 ZC706 Evaluation Board.

Input Data Slice LUTs Slice Registers Maximum Frequency in MHz
Scalar 14 37 985.58
Vector 18 66 972.66

The resources and frequencies vary based on the type of input data and the value of Downsample
factor (K) as well as other parameter values you select in the block mask. Using a vector input can
increase the throughput, however, doing so also increases the number of hardware resources that the
block uses.

Version History
Introduced in R2022b
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also

Blocks
Upsampler

Objects
dsphdl.Upsampler | dsphdl.Downsampler
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Upsampler

Upsample by adding zeros between input samples

Libraries:
DSP HDL Toolbox / Signal Operations

Description

The Upsampler block upsamples an input signal by adding L-1 zeros between input samples, where L
is the upsampling factor. The block supports these combinations of input and output data.

* Scalar input and scalar output
* Scalar input and vector output
* Vector input and vector output

The block provides an architecture suitable for HDL code generation and hardware deployment.

Ports
Input

data — Input data
scalar | column vector

Input data, specified as a scalar or a column vector with a length up to 64. The input data must be an
integer or a fixed-point value with a word length less than or equal to 128.

The double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |

fixed point

valid — Valid input data indicator
01

Control signal that indicates whether the input data is valid. When this value is 1, the block accepts
the values on the data input port. When this value is 0, the block ignores the values on the data input
port.

Data Types: Boolean

reset — Option to clear internal states
01

Control signal that clears the internal states. When this value is 1, the block stops the current
calculation and clears its internal states. When this value is 0 and valid is 1, the block captures data
for processing.
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For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select the Enable reset input port parameter.

Data Types: Boolean
Output

data — Upsampled data
scalar | column vector

Upsampled data, returned as a scalar or a column vector with a length up to 1 to 128.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixed point

valid — Valid output data indicator
0]1

Control signal that indicates whether data from the data output port is valid. When this value is 1,

the block returns valid data on the data output port. When this value is 0, the values on the data
output port are not valid.

Data Types: Boolean

ready — Block ready indicator
01

Control signal that indicates whether the block is ready for new input data on the next cycle. When

this value is 1, you can specify the data and valid inputs for the next time step. When this value is 0,
the block ignores any input data in the next time step.

Dependencies

To enable this port, on the Control Ports tab, select the Enable ready output port parameter.
Data Types: Boolean

Parameters

Main

Upsample factor (L) — Upsampling factor

3 (default) | integer in the range [1, 2.7 16]

Specify the upsampling factor by which the block increases the input sampling rate.
Sample offset (0 to L-1) — Sample offset

0 (default) | integer in the range [0, 2.716 - 1]

Specify the sample offset as an integer in the range [0, Upsample factor (L) - 1].
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Minimum number of cycles between valid input samples — Minimum number of cycles between
valid input samples

1 (default) | factor or multiple of Upsample factor (L) | integer in the range [1, Inf]

Specify the minimum number of cycles between the valid input samples as a factor or multiple of
Upsample factor (L) or an integer in the range [1, Inf] based on the type of input and output data.

Input Data Output Data Minimum Number of Cycles Between
Valid Input Samples

Scalar Scalar Greater than or equal to Upsample factor
()

Scalar Vector Factor of Upsample factor (L)

Vector Vector Integer in the range [1, Inf]

Control Ports
Enable reset input port — Option to enable reset input port
off (default) | on

Select this parameter to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

For more reset considerations, see “Tips” on page 1-20.
Enable ready output port — Option to enable ready output port
off (default) | on

Select this parameter to enable the ready output port. This port indicates whether the block is ready
for new input data.

Algorithms

Latency

The latency of the block changes according to the length of the input. The latency of the block is 1
when you set the Upsample factor (L) parameter to 1. This table shows the latency of the block.

Input Data Output Data |Latency in Clock Cycles
Scalar Scalar 3
Scalar Vector 3
Vector Vector 2
Scalar Input

This figure shows the output of the block with the default configuration, when you set the Upsample
factor (L) and Sample offset (0 to L-1) parameters to 3 and 0, respectively. The latency of the
block for a scalar input is three clock cycles.
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This figure shows the output of the block when you set the Upsample factor (L) parameter value to
8 and the Sample offset (0 to L-1) parameter to 1. The latency of the block is three clock cycles.

Clock

Input Signals
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Output Signals
»data
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Vector Input

This figure shows the output of the block for a two-element column vector input when you set the
Upsample factor (L) and Sample offset (0 to L-1) parameters to 3 and 0, respectively. The latency
of the block is two clock cycles.

Clock
Input Signals
»-data
—  valid
Oulput Signals
»data

—  valid
—  ready

Cursor 1| 2.00s 2
Cursor 2 0s|0s]

This figure shows the output of the block for an eight-element column vector input when you set the
Upsample factor (L) and Sample offset (0 to L-1) parameters to 4 and 0, respectively. The latency
of the block is two clock cycles.
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Performance

The performance of the synthesized HDL code varies with your target and synthesis options. The
performance also varies based on the input data type.

This table shows the resource and performance data synthesis results of the block for a scalar input
and for a 16-element column vector input of type fixdt(1,16,0) when you set the Upsample
factor (L) and Sample offset (0 to L-1) parameters to 8 and 0, respectively. The generated HDL
targets the Xilinx Zyng- 7000 ZC706 Evaluation Board.

Input Data Slice LUTs Slice Registers Maximum Frequency in MHz
Scalar 35 60 900.81
Vector 384 514 926.29

The resources and frequencies vary based on the type of input data and the value of Upsample
factor (L), as well as other parameter values you select in the block mask. Using a vector input can
increase the throughput, however, doing so also increases the number of hardware resources that the
block uses.

Version History
Introduced in R2022b
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
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HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also

Blocks
Downsampler

Objects
dsphdl.Upsampler | dsphdl.Downsampler
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LMS Filter

Minimize error between observed and desired signals

Libraries:
2jceta “=p  DSP HDL Toolbox / Filtering

. LMS Filter .
3 desired Latency = — valid [p

Y valid weights [

Description

The LMS Filter block estimates the filter weights and minimizes the error between a desired signal
and an observed signal using the mean square error (MSE) criteria. The block adapts its weights until
the error between the data and the desired data is minimal. The block accepts scalar and vector
inputs of type real and complex.

You can use this block for various applications, such as noise cancellation, system identification, and
inverse system modeling. The block provides an architecture suitable for HDL code generation and
hardware deployment.

Ports
Input

data — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values. The input vector size
must be in the range [2, 64] and it must be less than the filter length.

Use double and single data types for simulation, but not for HDL code generation. For HDL code
generation, the input date type must be signed fixed point.

Data Types: single | double | fixed point

desired — Desired input data
scalar or column vector of real or complex values

Desired input data, specified as a scalar or column vector of real or complex values. The input vector
size must be in the range [2, 64] and it must be less than filter length. The desired port must have
the same data type, complexity, and dimensions as the input data port.

Data Types: single | double | fixed point
Complex Number Support: Yes

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input ports data and desired. When valid is 0 (false), the block ignores the values
from the input ports data and desired.
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Data Types: Boolean

stepSize — Convergence and stability of filter
real scalar

Specify the step size to control convergence and stability of the filter. The recommended step size
must be less than 1/(2 x Input power x Filter length).

You can use double and single data types for simulation, but not for HDL code generation. For
HDL code generation, the input date type must be unsigned fixed point.

Dependencies

To enable this port, on the Main tab, set the Step-size source parameter to Input port.

Data Types: double | single | fixed point

adapt — Update filter weights
scalar

When adapt is 1 (true) and input valid is 1 (true), the block adapts to the new filter weights for
every input valid. When the adapt is 0 (false) and the input valid is 1 (true) or 0 (false), the
block remains at its previous filter weights.

Dependencies

To enable this port, on the Main tab, select the Enable adapt input port parameter.
Data Types: Boolean

reset — Clears internal states
scalar

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation, clears internal states, and sets to the initial values of filter weights specified on the block
mask. When the reset is 0 (false) and the input valid is 1 (true), the block captures data for
processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select the Enable reset input port parameter.

Data Types: Boolean
Output

data — Filtered output data
scalar or column vector of real or complex values

Filtered output data, returned as a scalar or column vector of real or complex values. The dimensions
of the output match the dimensions of the input.

When the input data is a floating-point type, the output data inherits the data type of the input data.
When the input data is a fixed-point type, the output data is a fixed point with word length and
fractional length incremented by 1.
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Data Types: single | double | fixed point

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.

Data Types: Boolean

error — Error between output and desired signals
real or complex scalar or column vector

Outputs the result of subtracting the filtered output signal from the desired signal when the output
valid is 1 (true) .

If the input data and desired is a scalar or a column vector, the error signal has the same dimension
and complexity as the input data. When the input data is a floating-point type, the output data
inherits the data type of the input data. When the input data is a fixed-point type, the output data is
fixed point with word length incremented by 2 and fractional length incremented by 1.

Dependencies

To enable this port, on the Main tab, select the Enable filter error output port parameter.

Data Types: Boolean

weights — Updated filter weights
row vector

For each iteration, the block outputs the current updated filter weights from this port when the
output valid is 1 (true) .

For floating-point inputs, the weights data type must match the input type. For fixed-point signals, the
input must match the data type set to the Weights parameter.

Dependencies

To enable this port, on the Main tab, select the Enable filter weights output port parameter.
Data Types: Boolean

Parameters

Main

Filter length — Filter length

32 (default) | positive integer less than or equal to 2048

Specify the length of the LMS filter as a positive integer less than or equal to 2048.

Step-size source — Step size source

Property (default) | Input port
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Select whether the block specifies the step size through property or input port.

* Property — Specify step size by using the Step size (mu) parameter.
* Input port — Specify step size by using the stepSize port.

Step size (mu) — Step size
0.01 (default) | positive scalar numeric value

Specify the step size as a positive scalar numeric value. The recommended step size must be less than
1/(2 x Input power x Filter length).

Dependencies

To enable this parameter, set the Step-size source parameter to Property.
Initial value of filter weights — Initial value of filter weights

0 (default) | scalar | row vector

Enter the initial filter weights as a scalar or row vector of size equal to filter length.

When you specify a scalar value, the block considers it as a row vector equivalent to the specified
scalar value.

Enable adapt input port — Option to enable adapt input port

off (default) | on

Select this parameter to enable the adapt input port.

Enable filter weights output port — Option to enable weights output port

on (default) | off

Select this parameter to enable the weights output port.

For each iteration, the block outputs the current updated filter weights from this port.
Enable filter error output port — Option to enable error output port

of f (default) | on

Select this parameter to enable the error output port.

Data Types

Rounding mode — Rounding mode for type-casting the output

Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Rounding mode for type-casting the output to the data type specified by the Output parameter. When

the input data type is floating point, the block ignores this parameter. For more details, see
“Rounding Modes”.
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Saturate on integer overflow — Overflow handling for type-casting the output

off (default) | on

Overflow handling for type-casting the output to the data type specified by the Output parameter.
When the input data type is floating point, the block ignores this parameter. For more details, see
“Overflow Handling”.

Step size — Step size type
Inherit: Same word length as input (default) | <data type expression>

Specify the step size data type.

Dependencies
To enable this parameter, set the Step-size source parameter to Property.

Weights — Filter weights type

fixdt(1,16,15) (default) | Inherit: Same as input | <data type expression>
Specify the data type for the filter weights.

Step-size error product — Step size error product type

Inherit: Same word length as input (default) | Inherit: Inherit via internal rule|
<data type expression>

Specify the step size error product.
Control Ports

Enable reset input port — Option to enable reset input port

off (default) | on

Select this check box to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Use HDL global reset — Option to connect data path registers to generated HDL global reset signal

off (default) | on

Select this check box to connect the generated HDL global reset signal to the data path registers.
This parameter does not change the appearance of the block or modify simulation behavior in
Simulink. When you clear this check box, the generated HDL global reset clears only the control path
registers. The generated HDL global reset can be synchronous or asynchronous depending on the
HDL Code Generation > Global Settings > Reset type parameter in the model Configuration
Parameters.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.
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Algorithms

The following figure shows the high-level architecture block diagram of the LMS Filter block for a
scalar input. An observed signal is provided as input to the Input Memory block and also to the
Transpose Filter block, which is configured with a Discrete FIR Filter block. The output of the
Transpose Filter block is subtracted from the Desired input signal to output the Filter Error signal.
The Filter Error signal is multiplied with the Step-Size input signal and the resulted step-error
product is converted to the required data type. The step-error product is multiplied with the
corresponding tap delay line conjugate from the Input Memory block. In the Integrator block, the
multiplied output is added to the previous weight, Unit Delay, to output new filter weights. These
filter weights are routed back to the Transpose Filter block for the next weight updates.

Scalar Architecture
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Delays

The following figure shows the high-level architecture block diagram of the LMS Filter block for
vector input. The vector architecture is almost similar to the scalar architecture. In the vector
architecture, step-error product vectors are multiplied with the corresponding tap delay line
conjugates from the Input Memory block and then summed up in the Summation block. In the
Integrator block, the summed output is added to the previous weight vector Unit Delay to output new
filter weights. These filter weights are routed back to the Transpose Filter block for the next weight
updates.
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Vector Architecture
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For hardware implementation, all these operations are pipelined, which takes around D number of
delays to update the filter weights, where D is the latency of the block.

Latency
The latency of the block varies with the input size and complexity.

This figure shows the output of the block for a real scalar input when you set the Filter length
parameter to 64 and all other parameters to their default values. The latency of the block is 13 clock
cycles.

¥ InputSignals
»observedSignal | 1.2466735839843
- desiredSignal 0.882843017578
—  validin L
¥ OutputSignals

#filterOut
validOut
P emQut

Cursor 1

This figure shows the output of the block for a 4-by-1 real vector input when you set the Filter
length parameter to 64 and all other parameters to their default values. The latency of the block is
18 clock cycles.
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Performance

The performance of the synthesized HDL code varies with your target and synthesis options. These
resource and performance data are the place-and-route results from the generated HDL targeted to a
Xilinx ZynqUltrascale+™ MPSoC evaluation board. The two examples in the following tables use this
common configuration.

+ Filter length — 64

* 16-bit real input data

* Step size (mu) — 0.006

* [Initial value of filter weights — 0

For a scalar input, the design achieves a clock frequency of 523.01 MHz. The design uses these

resources.
Resource Number Used
LUT 8402

FFS 18819

Xilinx LogiCORE DSP48 129

For a 4-by-1 vector input, the design achieves a clock frequency of 512.82 MHz. The design uses

these resources.

Resource Number Used
LUT 27712

FFS 30322

Xilinx LogiCORE DSP48 516

Using a vector input can increase the throughput, however, doing so also increases the number of

hardware resources that the block uses.

Version History
Introduced in R2023a
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References
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPi |Number of registers to place at the outputs by moving existing delays
peline within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also

Blocks
LMS Filter | Block LMS Filter

Objects
dsphdl.LMSFilter
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dsphdl.CiICinterpolator

Package: dsphdl

Interpolate signal using CIC filter

Description

The dsphdl.CICInterpolator System object™ interpolates an input signal by using a cascaded
integrator-comb (CIC) interpolation filter. CIC interpolation filters are a class of linear phase finite
impulse response (FIR) filters consisting of a comb part and an integrator part. The CIC interpolation

filter structure consists of N sections of cascaded comb filters, a rate change factor of R, and N
sections of cascaded integrators. For more information about CIC interpolation filters, see
“Algorithms” on page 2-11.

The System object supports these combinations of input and output data.

* Scalar input and scalar output — Support for fixed and variable interpolation rates
* Scalar input and vector output — Support for fixed interpolation rates only

* Vector input and vector output — Support for fixed interpolation rates only

The System object provides an architecture suitable for HDL code generation and hardware
deployment.

The System object supports real and complex fixed-point inputs.

To filter input data with a CIC interpolator filter, follow these steps:

1 Create the dsphdl.CICInterpolator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

cicIntFilt = dsphdl.CICInterpolator

cicIntFilt = dsphdl.CICInterpolator(Name,Value)
Description

cicIntFilt = dsphdl.CICInterpolator creates a CIC interpolator filter System object,
cicIntFilt, with default properties.

cicIntFilt = dsphdl.CICInterpolator(Name,Value) creates the filter with properties set

using one or more name-value arguments. Enclose each property name in single quotes.
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Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

InterpolationSource — Source of interpolation factor
"Property' (default) | 'Input port'

Specify whether the System object operates with a fixed or variable interpolation rate.

* 'Property' — Use a fixed interpolation rate specified by the InterpolationFactor property.
 'Input port' — Use a variable interpolation rate specified by the R input argument.

Note The System object does not support variable interpolation for these two combinations of input
and output:

* Scalar input and vector output
* Vector input and vector output

InterpolationFactor — Interpolation factor
2 (default) | integer from 1 to 2048

Specify the interpolation factor as an integer from 1 to 2048. The range of available values depends
on the type of input and output data. This value gives the rate at which the System object interpolates
the input.

Input Data Output Data InterpolationFactor Valid Values
Scalar Scalar Integer from 1 to 2048

Scalar Vector Integer from 1 to 64

Vector Vector Integer from 1 to 64

Note For vector inputs, select the interpolation factor rate and input vector length such that their
multiplication value does not exceed 64.

Dependencies
To enable this property, set the InterpolationSource property to 'Property’.

MaxInterpolationFactor — Upper bound of variable interpolation factor
2 (default) | integer from 1 to 2048

Specify the upper bound of the range of valid values for the R input argument as an integer from 1 to
2048.
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Note The System object does not support variable interpolation for these two combinations of input
and output:

* Scalar input and vector output
* Vector input and vector output

Dependencies
To enable this property, set the InterpolationSource property to ' Input port'.

DifferentialDelay — Differential delay
1 (default) | 2

Specify the differential delay of the comb part of the filter as either 1 or 2 cycles.

NumSections — Number of integrator and comb sections
2 (default) |1|3]4]5]|6

Specify the number of sections in either the comb part or the integrator part of the System object.

NumCycles — Minimum number of cycles between valid input samples
1 (default) | factors or multiples of R

Specify the minimum number of cycles between the valid input samples as 1, factors of R, or
multiples of R based on the type of input and output data, where R is the interpolation factor.

Input Data Output Data Minimum Number of Cycles Between
Valid Input Samples

Scalar Scalar greater than or equal to R

Scalar Vector factors less than R

Vector Vector 1

Dependencies
To enable this property, set the InterpolationSource property to 'Property’.

GainCorrection — Output gain compensation
false (default) | true

Set this property to true to compensate for the output gain of the filter.

The latency of the System object changes depending on the type of interpolation you specify, the
number of sections, and the value of this property. For more information on the latency of the System
object, see “Latency” on page 2-14.

OutputDataType — Data type of output
"Full precision' (default) | ‘'Same word length as input' | 'Minimum section word
lengths'

Choose the data type of the filtered output data.

* 'Full precision' — The output data type has a word length equal to the input word length
plus gain bits.
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* 'Same word length as input' — The output data type has a word length equal to the input
word length.

* 'Minimum section word lengths' — The output data type uses the word length you specify
in the OutputWordLength property.

OutputWordLength — Word length of output
16 (default) | integer from 2 to 104

Word length of the output, specified as an integer from 2 to 104.

Dependencies
To enable this property, set the OutputDataType property to 'Minimum section word lengths'.

ResetInputPort — Reset argument
false (default) | true

When you set this property to true, the System object expects a reset input argument.

Usage

Syntax

[dataOut,validOut] cicIntFilt(datalIn,validIn)
[dataOut,validOut] cicIntFilt(datalIn,validIn,R)

cicIntFilt
cicIntFilt

[dataOut,validOut]
[dataOut,validOut]

dataIn,validIn, reset)
dataIn,validIn,R, reset)

—~ o~~~

Description

[dataOut,validOut] cicIntFilt(datalIn,validIn) filters and interpolates the input data
using a fixed interpolation factor only when validInis true.

[dataOut,validOut] = cicIntFilt(datalIn,validIn,R) filters the input data using the
specified variable interpolation factor R. The InterpolationSource property must be set to
"Input port'.

[dataOut,validOut] = cicIntFilt(dataIn,validIn, reset) filters the input data when
reset is false and clears filter internal states when reset is true. The System object expects the
reset argument only when you set the ResetIn property to true.

[dataOut,validOut] = cicIntFilt(dataIn,validIn,R, reset) filters the input data when
reset is false and clears filter internal states when reset is true. The System object expects the
reset argument only when you set the ResetIn property to true. The InterpolationSource
property must be set to ' Input port'.

Input Arguments

dataIn — Input data
scalar | column vector

Specify input data as a scalar or a column vector with a length from 1 to 64. The input data must be a
signed integer or signed fixed point with a word length less than or equal to 32.
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Data Types: int8 | int16 | int32 | fi
Complex Number Support: Yes

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validInis 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataln argument.

Data Types: logical

R — Variable interpolation rate
scalar

Use this argument to dynamically specify the variable interpolation rate during run time.

This value must have the data type fi(0,12,0) and must be an integer in the range from 1 to the
MaxInterpolationFactor property value.

Dependencies

To enable this argument, set the InterpolationSource property to 'Input port'.
Data Types: T1(0,12,0)

reset — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the object captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set the ResetIn property to true.

Data Types: logical
Output Arguments

dataOut — CIC-interpolated output data
scalar | column vector

CIC-interpolated output data, returned as a scalar or a column vector with a length from 1 to 64.

The OutputDataType property sets the data type of this argument.
Data Types: int8 | intl6 | int32 | fi
Complex Number Support: Yes

validOut — Indicates valid output data
scalar
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Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
datalOut argument are not valid.

Data Types: Llogical

ready — Indicates object is ready for new input data
logical scalar

Control signal that indicates that the object is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the object ignores any input data in the next time step.

Data Types: Llogical

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsphdl.CICInterpolator
getLatency Latency of CIC interpolation filter

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Create CIC Interpolation Filter for HDL Code Generation

This example shows how to use a dsphdl.CICInterpolator System object™ to filter and upsample
data. This object supports scalar and vector inputs. In this example, two functions are provided to
work with scalar and vector input data separately. You can generate HDL code from these functions.

Generate Frames of Random Input Samples

Set up workspace variables for the object to use. The object supports fixed and variable interpolation
rates for scalar inputs and only a fixed interpolation rate for vector inputs. The example runs the
HDLCICInterp maxR8 function when you set the scalar variable to true and runs the
HDLCICInterp vec function when you set the scalar variable to false. For scalar inputs, choose a
range of the input varRValue values and set the interpolation factor value R to the maximum
expected interpolation factor. For vector inputs, the input data must be a column vector of size 1 to
64 and R must be an integer multiple of the input frame size.

R = 8; % interpolation factor
M=1; % differential delay
N = 3; % number of sections
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scalar = true; % true for scalar; false for vector
if scalar
varRValue [2, 4, 5, 6, 7, 8];

vecSize = 1;
else

varRValue = R; %#ok

fac = (factor(R));

vecSize = fac(randi(length(fac),1,1));
end

numFrames = length(varRValue);
dataSamples = cell(1l,numFrames);
varRtemp = cell(1l,numFrames);

framesize = zeros(1l,numFrames);
refOutput = [];

WL = 0; % Word length

FL = 0; % Fraction length

Generate Reference Output from dsp.CICInterpolator System Object

Generate frames of random input samples and apply the samples to the dsp.CICInterpolator
System object. Later in this example, you use the output generated by the System object as reference
data for comparison. The System object does not support a variable interpolation rate, so you must
create and release the object for each change in interpolation factor value.

totalsamples = 0;
for i = l:numFrames
framesize(i) = varRValue(i)*randi([5 201,1,1);
dataSamples{i} = fi(randn(vecSize,framesize(i)),1,16,8);
ref cic = dsp.CICInterpolator('DifferentialDelay"',M,
'NumSections',N,
'InterpolationFactor',varRValue(i));
refOutput = [refOutput, ref cic(dataSamples{i}(:))."']; S#ok
release(ref cic);
end

Run Function Containing dsphdl.CICInterpolator System Object

Set the properties of the System object to match the input data parameters and run the function for
your input type. These functions operate on a stream of data samples rather than a frame. You can
generate HDL code from these functions.

The example uses the HDLCICInterp maxR8 function for a scalar input.

function [datalOut,validOut] = HDLCICInterp _maxR8(dataIn,validIn,R)
%SHDLCICInterp maxR8

Performs CIC interpolation with an input interpolation factor up to 8.
sampleIn is a scalar fixed-point value.

validIn is a logical scalar value.

o° o o°

persistent cic8;
if isempty(cic8)
cic8 = dsphdl.CICInterpolator('InterpolationSource', 'Input port',
'MaxInterpolationFactor',8,
'DifferentialDelay’,1,
"NumSections',3);
end
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[dataOut,validOut] = cic8(dataln,validIn,R);
end

The example uses the HDLCICInterp vec function for a vector input.

function [datalOut,validOut] = HDLCICInterp vec(dataIn,validIn)
%HDLCICInterp vec

Performs CIC interpolation with an input vector.

sampleIn is a fixed-point vector.

validIn is a logical scalar value.

o° o o°

persistent cicVec;
if isempty(cicVec)
cicVec = dsphdl.CICInterpolator('InterpolationSource', 'Property"',

"InterpolationFactor’,8,
'DifferentialDelay',1,
"NumSections',3);

end

[dataOut,validOut] = cicVec(dataIn,validIn);

end

To flush the remaining data, run the object by inserting the required number of idle cycles after each
frame using the latency variable. For more information, see the “GainCorrection” on page 2-0

property.

Initialize the output to a size large enough to accommodate the output data. The final size is smaller
than totalsamples due to interpolation

if scalar
latency = 3 + N + 2*R + 9;
dataOut = zeros(1l,totalsamples*R+numFrames*latency);
else
latency = 3 + (N*(vecSize*R))+ 3*N + 9; S#ok
dataOut = zeros(vecSize*R,totalsamples+numFrames*latency);
end
validOut = zeros(1l,size(dataOut,2));
idx=0;
for ij = l:numFrames
if scalar

dataIn = upsample([0 @ dataSamples{ij}],R);
validIn = upsample([true false true(l,length(dataSamples{ij}))1,R);

% scalar input with variable interpolation
for ii = 1:length(validIn)
idx = idx+1;
[dataOut(:,idx),validOut(idx)]
dataIn(ii),
validIn(ii), ...
fi(varRvalue(ij),0,12,0));

HDLCICInterp maxR8(

end
for ii = 1l:latency
idx = idx+1;
[dataOut(:,idx),validOut(idx)]
fi(0,1,16,8),

HDLCICInterp maxR8(
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false, ...
fi(varRValue(ij),0,12,0));
end

else
% vector input with fixed interpolation
for ii = l:size(dataSamples{ij},2) S#ok
idx = idx+1;
[dataOut(:,idx),validOut(idx)] = HDLCICInterp_ vec(
dataSamples{ij}(:,1ii),
true);
end
for ii = 1l:latency
idx = idx+1;
[dataOut(:,idx),validOut(idx)] = HDLCICInterp_ vec(
fi(zeros(vecSize,1),1,16,8),
false);
end
end
end

Compare Function Output with Reference Data

Compare the function results against the output from the dsp.CICInterpolator object.

cicOutput
refOutput

dataOut(:,validOut==1);
refOutput(:);

fprintf('\nCIC Interpolator\n');

difference = (abs(cicOutput(:)-refOutput(l:numel(cicOutput)))=>0);

fprintf(['\nTotal number of samples differed between Behavioral
'and HDL simulation: %d \n'],sum(difference));

CIC Interpolator

Total number of samples differed between Behavioral and HDL simulation: 0

Explore Latency of CIC Interpolator Object

The latency of the dsphdl.CICInterpolator System object™ varies depending on how many
integrator and comb sections your filter has, the input vector size, and whether you enable gain
correction. Use the getlLatency function to find the latency of a particular filter configuration. The
latency is the number of cycles between the first valid input and the first valid output, assuming the
input is continuously valid.

Create a dsphdl.CICInterpolator System object and request the latency. The default System
object filter has two integrator and comb sections, and the gain correction is disabled.

hdlcic = dsphdl.CICInterpolator

hdlcic =
dsphdl.CICInterpolator with properties:

InterpolationSource: 'Property'
InterpolationFactor: 2
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)

DifferentialDelay: 1
NumSections: 2
NumCycles: 1
GainCorrection: f

Show all properties

L def
L def = 13

getLatency(hdlcic)

Modify the filter object so it has three integrator and comb sections. Check the resulting change in
latency.

hdlcic.NumSections = 3;
L 3sec = getlLatency(hdlcic)

L 3sec = 18

Enable the gain correction on the filter object with vector input size 2. Check the resulting change in
latency.

hdlcic.GainCorrection = true;

vecSize = 2;

L wgain = getlLatency(hdlcic,vecSize)
L wgain = 33

Algorithms

CIC Interpolation Filter

The transfer function of a CIC interpolation filter is

RM -1 N

> 7
K=o

T e A T o M _ ,
Ca-zyv T TR

H(z) =

* Hcis the transfer function of the comb part of the CIC filter.
* His the transfer function of the integrator part of the CIC filter.

* N is the number of sections in either the comb part or integrator part of the filter. This value does
not represent the total number of sections throughout the entire filter.

* Ris the interpolation factor.
* M is the differential delay.

CIC Filter Structure

The dsphdl.CICInterpolator System object has the CIC filter structure shown in this figure. The
structure consists of N sections of cascaded comb filters, a rate change factor of R, and N sections of
cascaded integrators [1].

--

Upsample
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You can locate the unit delay in the integrator part of the CIC filter in either the feedforward or
feedback path. These two configurations yield an identical filter frequency response. However, the
numerical outputs from these two configurations are different due to the latency of the paths.
Because this configuration is preferred for HDL implementation, this System object puts the unit
delay in the feedforward path of the integrator.

Fixed and Variable Interpolation

The System object upsamples the comb stage output using R, either using the fixed interpolation rate
provided using the InterpolationFactor property or the variable interpolation rate provided using the
R input argument. At the upsampling stage, the System object uses a counter to count the valid input
samples, which depend on the interpolation rate. Whenever the interpolation rate changes, the
System object resets and starts a new calculation from the next sample. This mechanism prevents the
object from accumulating false values. Then, the System object provides the interpolated output to
the integrator part of the CIC filter.

Gain Correction

The gain of the CIC interpolation filter at each stage is given by

2! i=1,2,...,N
Gj = { 2N -i i—N .
A l(gM)l i=N+1,.,2N

* G, is the gain at ith stage.

* Risthe InterpolationFactor property value.
* Misthe DifferentialDelay property value.

* Nisthe NumSections property value.

The output of the System object is amplified by a specific gain value. This gain equals the gain of the

. . o _ ®RxMN
2Nth stage of the CIC interpolation filter and is given by Gain = —x

The System object implements gain correction in two parts: coarse gain and fine gain. In coarse gain
correction, the System object calculates the shift value, adds the shift value to the fractional bits to
create a numeric type, and performs a bit-shift left and reinterpretcast. In fine gain correction, the
System object divides the remaining gain with the coarse gain if the gain is not a power of 2. Then,
the System object multiplies the corrected coarse gain value by the inverse value of the fine gain.
Before the System object starts processing, all possible shift and fine gain values are precalculated
and stored in an array.

You can modify this equation to Gain = 2cGain ¢ fGain. In this equation, cGain is the coarse gain and
fGain is the fine gain. These gains are given by these equations.

* c¢Gain = floor(logyGain)
fGain = Gain/2°69N = Gain x 2~ccan

To perform gain correction when the InterpolationSource propertyis set to 'Input port', the
System object sets the output data type configured with the maximum interpolation rate and bit-shifts
left for all of the values under the maximum interpolation rate. The bit-shift value is equal to
Maximum gain — logy(current gain).
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}1[I‘I] —
16

Output Data Type

This section explains how the System object outputs data is based on the output data type selection.
Consider a System object with R, M, and N values of 8, 1, and 3, respectively, and an input width of
16. The word length at the ith stage is calculated as B; = By, + [logy(G;)], where:

* G, is the gain at ith stage.
* By, is the input word length.
* B;is the word length at ith stage.

The output word length is calculated as Boy: = B, + N — 1, where Bg,; is the output word length.

When you set the OutputDataType property to 'Full precision’, the System object returns data
with a word length of 22 by adding 6 gain bits to the input word length of 16. The word lengths of the
internal comb and integrator stages are set to accommodate the bit growth.

f/\
C—C—CHRFI—I | =

\_/ 22
17 18 18 18

20 22

When you set the OutputDataType property to 'Same word length as input', the object
outputs data with a word length of 16, which is the same length as the input word length. The word
lengths of the internal comb and integrator stages are set in the same way as in 'Full precision'
mode.

m~CHCHCJE%IH —1 |
16 \/ 16
17 18 18 18 20

22

When you set the OutputDataType property to 'Minimum section word lengths' and the
OutputWordLength to 16, the System object returns data with a word length of 16. The word
lengths of the internal comb and integrator stages are set in the same way as in 'Full precision'
mode.

m~CHCHCJE%IH —1 |
16 \/ 16
17 18 18 18 20

22
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Latency

The latency of the System object changes depending on the type of input, the interpolation you
specify, the value of the NumSections property, GainCorrection property, and the NumCycles
property. This table shows the latency of the System object. N is the number of sections, vecLen is the
length of the vector, and R is the interpolation factor.

Common latency is equal to 2 + (N x (vecLen x R)) + 3 x N, when R is equal to 1 and it is equal to 3 +
(N x (vecLen x R)) + 3 x N, when R is greater than 1.

Input Output |Interpolat |Gain Minimum |Latency in Clock Cycles
Data Data ion Type |Correctio \number
n of cycles
between
valid
input
samples
(NumCyc
les)
Scalar Scalar Fixed of f NumCycle |3 + N.
s =Rand
>R 2+ N,whenR =1.
on NumCycle|3 + N + 9.
s =Rand
>R 2+ N+ 9 whenR =1.
Scalar Scalar Variable off NA 34+ N+ 2xRyu
2 + N, when R, = 1.
on NA 2+N+2xRp, +9.
2+ N+ 9, whenR,,, =1.
Scalar Vector Fixed off NumCycle |Common latency + 1, when R is greater than N.
s=1
Common latency, when R is less than or equal to N.
Common latency - (1 + floor(N/(3 x R))), when R is
less than N and (vecLen == 2 && (R == 2 && (N
NumCycle|3+ N+ (R+1)xN+2)+1+(N-1)x
s<R NumCycles.
on NumCycle |Common latency + 1 + 9, when R is greater than N.
s=1
Common latency + 9, when R is less than or equal to
N.
Common latency - (1 + floor(N/(3 x R))) + 9, when R
is less than N and (vecLen == 2 && (R == 2 && (N
==4||[N==5||N==06)) || (R==3 && N == 0)).
NumCycle|3+ N+ (R+1)xN+2)+1+(N-1)x
s<R NumCycles + 9 .
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Vector

Vector Fixed off NumCycle |Common latency
s=1

Common latency - 1, when (vecLen == 2 && (R ==
2&& (N==4||[N==5]||N==6)) || R==3 & N
== 0)) || (vecLen == 3 && (R == 2 && N == 0)).

Common latency - (N >1) + (N > 4)), whenR =1
and vecLen == 2.

Common latency - ((N > (vecLen - 1)), when R =1
and vecLen > 2.

on NumCycle |Common latency + 9.
s=1
Common latency - 1 + 9, when (vecLen == 2 && (R
==2&&(N==4||N== 5 ||N== 6)) “ (R::
&& N ==6)) || (vecLen == 3 && (R == 2 && N ==
6)).

Common latency - (N >1) + (N > 4)) + 9, when R =
1 and vecLen == 2.

Common latency - ((N > (vecLen - 1)) + 9, when R
=1 and vecLen > 2.

Note The System object does not support variable interpolation for these two combinations of input
and output:

e Scalar input and vector output
* Vector input and vector output

Scalar Input

This section shows the output of the System object for a scalar input with different R, M, and N
values.

This figure shows the output of the System object with the default configuration (that is, with a fixed
interpolation rate and R, M, and N values of 2, 1, and 2, respectively). The latency of the System
object is 5 clock cycles and is calculated as 3 + N, where N is the number of sections.
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Clock e e e e e e e e
Input Signals
> data
—  valid
Ouiput Signals
- data

— valid
—  ready

Cursor 1 0 5
Cursor2| 500s

This figure shows the output of the System object with a fixed interpolation rate, R, M, and N values
of 8, 1, and 3, respectively, and GainCorrection set to true. The latency of the object is 15 clock
cycles and is calculated as 3 + N + 9, where N is the number of sections.

Clock e O
¥ Input Signals
»-data
—  valid
¥ Output Signals
»-data
— wvalid
—  ready

Cursor 1
Cursor 2| 15.00 s

This figure shows the output of the System object with variable interpolation rate (R input argument)
values of 2, 4, and 8 and with M and N values of 1 and 3, respectively. In this case, the
GainCorrection property is set to false. The System object accepts R argument value changes
only when validInis 1 (true). The latency of the System object is 22 clock cycles and is calculated
as 3+ N + 2 x R,,,,, where N is the number of sections and R,,,, is the maximum interpolation factor.

Cursor 1 54.0 5
Cursor2| 860s

Vector Input

This section shows the output of the System object for a vector input with different R, M, and N
values.

This figure shows the output of the System object for a two-element column vector input with the

default configuration, that is, with a fixed interpolation rate and R, M, and N values of 2, 1, and 2,
respectively. The latency of the System object is 38 clock cycles.
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Clock
¥ Input Signals
»-data
valid
¥ Output Signals
»data

valid

10s

{17.00 s}——
fous

This figure shows the output of the System object for an eight-element column vector input with a
fixed interpolation rate, R, M, and N values of 8, 1, and 3, respectively, and the GainCorrection
property to true. The latency of the System object is 209 clock cycles.

Clock
Input Signals
T3TATST6 777879 80

Output Signals
»data 0000.NDOODOOODDO0D0D00000000000D0000D0000000D0000D0DV00D0D0D0DD00OD0O0N0O00D0
wvalid

Cursor 2| 213.0s

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. It also
depends on the input data type.

This table shows the resource and performance data synthesis results of the System object for a
scalar input with fixed and variable interpolation rates and for a two-element column vector of type
fixdt(1,16,0) with a fixed interpolation rate when R, M, and N are 2, 1, and 2, respectively. The
generated HDL code is targeted to the Xilinx Zyng- 7000 ZC706 Evaluation Board.

Input Data Interpolation Type |Slice LUTs Slice Registers Maximum Frequency in
MHz
Scalar Fixed rate 68 90 844.12
Variable rate 143 115 451.83
Vector Fixed rate 480 921 376.51

The resources and frequencies vary based on the type of input data, and the values of R, M, and N, as
well as other properties.

Version History
Introduced in R2022a

References
[1] Hogenauer, E. “An Economical Class of Digital Filters for Decimation and Interpolation.” IEEE

Transactions on Acoustics, Speech, and Signal Processing 29, no. 2 (April 1981): 155-62.
https://doi.org/10.1109/TASSP.1981.1163535.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB® simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The software supports double and single data types for simulation, but not for HDL code
generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also

Objects
dsphdl.CICDecimator

Blocks
CIC Interpolator | CIC Decimator
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dsphdl.CICDecimator

Package: dsphdl

Decimate signal using CIC filter

Description

The dsphdl.CICDecimator System object decimates an input signal by using a cascaded
integrator-comb (CIC) decimation filter. CIC filters are a class of linear phase finite impulse response
(FIR) filters consisting of a comb part and an integrator part. The CIC decimation filter structure
consists of N sections of cascaded integrators, a rate change factor of R, and N sections of cascaded
comb filters. For more information about CIC decimation filters, see “Algorithms” on page 2-27.

The System object supports these combinations of input and output data.

* Scalar input and scalar output — Support for fixed and variable decimation rates
* Vector input and scalar output — Support for fixed decimation rates only
* Vector input and vector output — Support for fixed decimation rates only

The System object provides an architecture suitable for HDL code generation and hardware
deployment.

The System object supports real and complex fixed-point inputs.

To filter input data with an HDL-optimized CIC decimation filter, follow these steps:

1 Create the dsphdl.CICDecimator object and set its properties.
2 (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

cicDecFilt = dsphdl.CICDecimator

cicDecFilt = dsphdl.CICDecimator(Name,Value)
Description

cicDecFilt = dsphdl.CICDecimator creates an HDL-optimized CIC decimation filter System
object, cicDecFilt, with default properties.

cicDecFilt = dsphdl.CICDecimator(Name,Value) creates the filter with properties set using
one or more name-value arguments. Enclose each property name in single quotes.
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Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

DecimationSource — Source of decimation factor
‘Property' (default) | 'Input port'

Specify whether the System object operates with a fixed or variable decimation rate.

* 'Property' — Use a fixed decimation rate specified by the DecimationFactor property.
* 'Input port' — Use a variable decimation rate specified by the R input argument.

For vector inputs, the System object does not support a variable decimation rate.

DecimationFactor — Decimation factor
2 (default) | integer from 1 to 2048

Specify the decimation factor as an integer from 1 to 2048. This value gives the rate at which the
System object decimates the input.

Dependencies
To enable this property, set the DecimationSource property to 'Property’.

MaxDecimationFactor — Upper bound of variable decimation factor
2 (default) | integer from 1 to 2048

Specify the upper bound of the range of valid values for the R input argument as an integer from 1 to
2048.

Note For vector inputs, the System object does not support variable decimation.

Dependencies
To enable this property, set the DecimationSource property to 'Input port'.

DifferentialDelay — Differential delay
1 (default) | 2

Specify the differential delay of the comb part of the filter as either 1 or 2 cycles.

NumSections — Number of integrator or comb sections
2 (default) |1|3]4]|5]|6

Specify the number of sections in either the integrator or the comb part of the System object.

GainCorrection — Output gain compensation
false (default) | true
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Set this property to true to compensate for the output gain of the filter.

The latency of the System object varies depending on the type of input, the decimation you specify,
the number of sections, and the value of this property. For more information on the latency of the
System object, see “Latency” on page 2-30.

OutputDataType — Data type of output
"Full precision' (default) | 'Same word length as input' | 'Minimum section word
lengths'

Choose the data type of the filtered output data.
* 'Full precision' — The output data type has a word length equal to the input word length
plus gain bits.

*+ 'Same word length as input' — The output data type has a word length equal to the input
word length.

* 'Minimum section word lengths' — The output data type uses the word length you specify
in the QutputWordLength property. When you choose this option, the System object applies a
pruning algorithm internally. For more information about pruning, see “Output Data Type” on
page 2-28.

OutputWordLength — Word length of output
16 (default) | integer from 2 to 104

Word length of the output, specified as an integer from 2 to 104.

Note When this value is 2, 3, 4, 5, or 6, the System object can overflow the output data.

Dependencies

To enable this property, set the QutputDataType property to 'Minimum section word
lengths'.

ResetInputPort — Reset argument
false (default) | true

When you set this property to true, the System object expects a reset input argument.

Usage

Syntax

[dataOut,validOut] = cicDecFilt(datalIn,validIn)
[dataOut,validOut] = cicDecFilt(datalIn,validIn,R)
[dataOut,validOut] = cicDecFilt(dataln,validIn, reset)
[dataOut,validOut] = cicDecFilt(dataln,validIn,R, reset)

Description

[dataOut,validOut] = cicDecFilt(dataIn,validIn) filters and decimates the input data
using a fixed decimation factor only when validIn is true.
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[dataOut,validOut] = cicDecFilt(datalIn,validIn,R) filters the input data using the
specified variable decimation factor R. The DecimationSource property must be set to ' Input
port'.

[dataOut,validOut] = cicDecFilt(dataln,validIn, reset) filters the input data when
reset is false and clears filter internal states when reset is true. The System object expects the
reset argument only when you set the ResetInputPort property to true.

[dataOut,validOut] = cicDecFilt(dataIn,validIn,R, reset) filters the input data when
reset is false and clears filter internal states when reset is true. The System object expects the
reset argument only when you set the ResetInputPort property to true. The
DecimationSource property must be set to 'Input port'.

Input Arguments

dataIn — Input data
scalar | column vector

Specify input data as a scalar or a column vector with a length from 1 to 64. The input data must be a
signed integer or signed fixed point with a word length less than or equal to 32. The
DecimationFactor property must be an integer multiple of the input frame size.

Data Types: int8 | int16 | int32 | fi
Complex Number Support: Yes

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validInis 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataln argument.

Data Types: logical

R — Variable decimation rate
scalar

Specify the decimation rate.

The R value must have the data type fi(0,12,0) and it must be an integer in the range from 1 to
the MaxDecimationFactor property value.

Dependencies
To enable this argument, set the DecimationSource property to 'Input port'.
Data Types: f1(0,12,0)

reset — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input validis 1 (true),
the object captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.
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Dependencies

To enable this argument, set the ResetInputPort property to true.

Data Types: Logical
Output Arguments

dataOut — CIC-decimated output data
scalar | column vector

CIC-decimated output data, returned as a scalar or a column vector with a length from 1 to 64.

The QutputDataType property sets the data type of this argument. See “Output Data Type” on page
2-28.

Data Types: int8 | intl6 | int32 | fi

Complex Number Support: Yes

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataQut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.

Data Types: logical

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsphdl.CICDecimator
getLatency Latency of CIC decimation filter

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Create CIC Decimation Filter for HDL Code Generation
This example shows how to use a dsphdl.CICDecimator System object™ to filter and downsample

data. This object supports scalar and vector inputs. In this example, two functions are provided to
work with scalar and vector inputs separately. You can generate HDL code from these functions.
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Generate Frames of Random Input Samples

Set up workspace variables for the object to use. The object supports fixed and variable decimation
rates for scalar inputs and only a fixed decimation rate for vector inputs. The example runs the
HDLCIC maxR8 function when you set the scalar variable to true and runs the HDLCIC vec function
when you set the scalar variable to false. For scalar inputs, choose a range of the input varRValue
values and set the decimation factor value R to the maximum expected decimation factor. For vector
inputs, the input data must be a column vector of size 1 to 64 and R must be an integer multiple of
the input frame size.

R = 8; % decimation factor
M=1; % differential delay
N = 3; % number of sections
scalar = true; % true for scalar; false for vector
if scalar

varRvValue = [2, 4, 5, 6, 7, 8];

vecSize = 1;
else

varRValue = R; %#ok

fac = (factor(R));

vecSize = fac(randi(length(fac),1,1));
end

numFrames = length(varRValue);
dataSamples = cell(1l,numFrames);
varRtemp = cell(1l,numFrames);

framesize = zeros(1l,numFrames);
refOutput = [1];

WL = 0; % Word length

FL = 0; % Fraction length

Generate Reference Output from dsp.CICDecimator System Object

Generate frames of random input samples and apply the samples to the dsp.CICDecimator System
object. Later in this example, you use the output generated by the System object as reference data for
comparison. The System object does not support a variable decimation rate, so you must create and
release the object for each change in decimation factor value.

totalsamples = 0;
for i = 1l:numFrames
framesize(i) = varRValue(i)*randi([5 201,1,1);
dataSamples{i} = fi(randn(vecSize, framesize(i)),1,16,8);
ref cic = dsp.CICDecimator('DifferentialDelay',M,
"NumSections',N, .
'DecimationFactor',varRValue(i));
refOutput = [refOutput, ref cic(dataSamples{i}(:))."']; S#ok
release(ref cic);
end

Run Function Containing dsphdl.CICDecimator System Object

Set the properties of the System object to match the input data parameters and run the function for
your input type. These functions operate on a stream of data samples rather than a frame. You can
generate HDL code from these functions.

The example uses the HDLCIC maxR8 function for a scalar input.
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function [dataOut,validOut] = HDLCIC maxR8(dataIn,validIn,R)
%HDLCIC maxR8

% Performs CIC decimation with an input decimation factor up to 8.
% dataIn is a scalar fixed-point value.

% validIn is a logical scalar value.

persistent cic8;
if isempty(cic8)
cic8 = dsphdl.CICDecimator('DecimationSource', 'Input port',

'MaxDecimationFactor',8,
'DifferentialDelay’,1,
"NumSections',3);

end

[dataOut,validOut] = cic8(dataln,validIn,R);

end

The example uses the HDLCIC vec function for a vector input.

function [datalOut,validOut] = HDLCIC vec(dataIn,validIn)
%HDLCIC vec

Performs CIC decimation with an input vector.

dataln is a fixed-point vector.

validIn is a logical scalar value.

o° o o°

persistent cicVec;
if isempty(cicVec)
cicVec = dsphdl.CICDecimator('DecimationSource', 'Property"',

'DecimationFactor!',8,
'DifferentialDelay’,1,
"NumSections',3);

end

[dataOut,validOut] = cicVec(datalIn,validIn);

end

To flush the remaining data, run the object by inserting the required number of idle cycles after each
frame using the latency variable. For more information, see “Latency” on page 2-30.

Initialize the output to a size large enough to accommodate the output data. The final size is smaller
than totalsamples due to decimation.

latency floor((vecSize - 1)*(N/vecSize)) + 1 + N + (2+(vecSize+1l)*N) + 9;
dataOut zeros(1l,totalsamples+numFrames*latency);
validOut = zeros(1l,totalsamples+numFrames*latency);

idx=0;
for ij = l:numFrames
if scalar

% scalar input with variable decimation
for ii = 1l:length(dataSamples{ij})
idx = idx+1;
[dataOut(idx),validOut(idx)] = HDLCIC maxR8(
dataSamples{ij}(ii),
true, ...
fi(varRvValue(ij),0,12,0));
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end
for ii = 1l:latency
idx = idx+1;
[dataOut(idx),validOut(idx)] = HDLCIC maxR8(
fi(0,1,16,8),
false, ...
fi(varRValue(ij),0,12,0));
end

else
% vector input with fixed decimation
for ii = l:size(dataSamples{ij},2) S#ok
idx = idx+1;
[dataOut(idx),validOut (idx)]
dataSamples{ij}(:,1ii),
true);

HDLCIC vec(

end
for ii = 1l:latency
idx = idx+1;
[dataOut(idx),validOut(idx)] = HDLCIC vec(
fi(zeros(vecSize,1),1,16,8),
false);
end
end
end

Compare Function Output with Reference Data

Compare the function results against the output from the dsp.CICDecimator object.

cicOutput = dataOut(validOut==1);

fprintf('\nCIC Decimator\n');

difference = (abs(cicOutput-refOutput(l:length(cicOutput)))=>0);

fprintf(['\nTotal number of samples differed between Behavioral '
"and HDL simulation: %d \n'],sum(difference));

CIC Decimator

Total number of samples differed between Behavioral and HDL simulation: 0

Explore Latency of CIC Decimator Object

The latency of the dsphdl.CICDecimator System object™ varies depending on how many
integrator and comb sections your filter has, the input vector size, and whether you enable gain
correction. Use the getLatency function to find the latency of a particular filter configuration. The
latency is the number of cycles between the first valid input and the first valid output, assuming the
input is continuously valid.

Create a dsphdl.CICDecimator System object and request the latency. The default System object
filter has two integrator and comb sections, and the gain correction is disabled.

hdlcic

dsphdl.CICDecimator

hdlcic =
dsphdl.CICDecimator with properties:
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DecimationSource: 'Property
DecimationFactor: 2
DifferentialDelay: 1
NumSections: 2
GainCorrection: false

Show all properties

L def

getLatency(hdlcic)
L def =5

Modify the filter object so it has three integrator and comb sections. Check the resulting change in
latency.

hdlcic.NumSections = 3;
L 3sec = getlLatency(hdlcic)

6

L 3sec

Enable the gain correction on the filter object with vector input size 2. Check the resulting change in
latency.

hdlcic.GainCorrection = true;

vecSize = 2;

L wgain = getlLatency(hdlcic,vecSize)
L wgain = 25

Algorithms

CIC Decimation Filter
The transfer function of a CIC decimation filter is

RM -1

3,

N (1 _ Z—RM)N

R Ui

(- -]

= HiN(2) - HN(2) .

* His the transfer function of the integrator part of the CIC filter.
* H,is the transfer function of the comb part of the CIC filter.

* N is the number of sections. The number of sections in a CIC filter is defined as the number of
sections in either the comb part or the integrator part of the filter. This value does not represent
the total number of sections throughout the entire filter.

* R is the decimation factor.
* M is the differential delay.

CIC Filter Structure

The dsphdl.CICDecimator System object has the CIC filter structure shown in this figure. The
structure consists of N sections of cascaded integrators, a rate change factor of R, and N sections of
cascaded comb filters [1].
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Designs can put the unit delay in the integrator part of the CIC filter in either the feedforward or
feedback path. These two configurations yield an identical filter frequency response. However, the
numerical outputs from these two configurations are different due to the latency of the paths. This
System object puts the unit delay in the feedforward path of the integrator.

Fixed and Variable Decimation

The System object downsamples the integrator stage output using R, either based on the fixed
decimation rate provided using the DecimationFactor property or the variable decimation rate
provided using the R input argument. At the downsampler stage, the System object uses a counter to
count the valid input samples, which depend on the decimation rate. Whenever the decimation rate
changes, the object resets and starts a new calculation from the next sample. This mechanism
prevents the System object from accumulating invalid values. Then, the System object provides the
decimated output to the comb part.

Gain Correction

The gain of the System object is given by Gain = (R x M w.

* Risthe DecimationFactor property value.
* Misthe DifferentialDelay property value.
* N is the NumSections property value.

The System object implements gain correction in two parts: coarse gain and fine gain. In coarse gain
correction, the System object calculates the shift value, adds the shift value to the fractional bits to
create a numeric type, and then performs a bit-shift left. In fine gain correction, the System object
divides the remaining gain with the coarse gain if the gain is not a power of 2 and then multiplies the
coarse gain corrected value with the inverse value of fine gain. All possible shift and fine gain values
are precalculated and stored in an array before the System object starts processing.

You can modify this equation as Gain = 2cGain fGain, where cGain means coarse gain and fGain
means fine gain.

* ¢Gain = floor(log,Gain)
fGain = Gain/2°°*™ = Gain x 27°C"

To perform GainCorrection when the InterpolationSource property is set to ' Input port',
the System object sets the output data type configured with the maximum decimation rate and bit-
shifts left for all the values under the maximum decimation rate. The bit-shift value is equal to
Maximum gain — logy(current gain).

Output Data Type

This section explains how the System object determines the output data type. For example, consider a
filter with DecimationFactor, DifferentialDelay, and NumSections values of 8, 1, and 3,
respectively, with an input width of 16 bits.

The output word length is calculated as Boy: = By + [logy(Gain)l.
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* Gain = (R xM)N
* By, is the input word length.
* Bgy is the output word length.

When you set the OutputDataType property to 'Full precision', the System object returns data
with a word length of 25 bits, by adding nine gain bits to the input word length.
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When you set the OutputDataType property to 'Same word length as input', the object
outputs data with a word length of 16, which is the same length as the input word length. The
internal integrator and comb stages use the full-precision data type with 25 bits.
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When you set the OutputDataType property to '"Minimum section word lengths' and the
OutputWordLength property to 16, the System object returns data with a word length of 16 bits. In
this case, the object changes the bit width at each stage, based on the pruning algorithm.

If the OutputWordLength property value is less than the number of bits requested at the output, the
least significant bits (LSBs) at the earlier stages are pruned. The Hogenauer algorithm provides the
number of LSBs to discard at each stage. This algorithm minimizes the loss of information in the
output data [1].
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Latency

The latency of the System object varies depending on the type of input, the decimation you specify,
the number of sections, and the value of the GainCorrection property. This table shows the latency
of the System object. N is the number of sections and vecLen is the length of the vector.

Input Output Decimation |Gain Latency in Clock Cycles
Data Data Type Correction
Scalar Scalar Fixed off 3+N.WhenR=1,2+N.
on 3+ N+9.WhenR=1,2+N+09.
Scalar Scalar Variable of f 4+ N.WhenR,,,,=1,3+N.
on 4+ N+ 9 WhenR,,,,=1,3+N+09.
Vector Scalar Fixed off floor((vecLen - 1) x (N/vecLen)) + 1 + N + (2 + (vecLen
+1)xN
on floor((vecLen - 1) x (N/vecLen)) + 1 + N + (2 + (vecLen
+1)xN)+9
Vector Vector Fixed off floor((vecLen - 1) x (N/vecLen)) + 1 + N + (2 + (vecLen
+1)xN
on floor((vecLen - 1) x (N/vecLen)) + 1 + N + (2 + (vecLen
+1)xN)+9

Note For vector inputs, the System object does not support variable decimation.

Scalar Input

This section shows the output of the System object for a scalar input with different R, M, and N
values.

This figure shows the output of the System object with the default configuration, that is, with a fixed
decimation rate and DecimationFactor, DifferentialDelay, and NumSections values of 2, 1,
and 2, respectively. The System object returns valid output data at every second cycle based on the
fixed DecimationFactor value of 2. The latency of the System object is 5 clock cycles, calculated as
3+N.

Clock
¥ input Signals
> data
valid
¥ Output Signals
»data { ay X [ A !

L valid | 1

This figure shows the output of the System object with a fixed decimation rate, DecimationFactor,
DifferentialDelay, and NumSections values of 8, 1, and 3, respectively, and GainCorrection
set to true. The System object returns valid output data at every eighth cycle based on the fixed
DecimationFactor value of 8. The latency of the object is 15 clock cycles and is calculated as 3 + N
+9.
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Clock
¥ Input Signals
»data
valid
¥ Output Signals

»data
— valid

—
Cursor 1| 15.00s

This figure shows the output of the System object for variable R values of 2, 4, and 8 along with M
and N values of 1 and 3. The GainCorrection property is set to false. The System object returns
valid output data at the second, fourth, and eighth cycles corresponding to the R values 2, 4, and 8,
respectively. The System object accepts R argument value changes only when the input validInis 1
(true). The latency of the System object is 7 clock cycles, calculated as 4 + N.

Clock 0 L e e e e L e e e L e e L e e L L LT L

¥ Input Signals
» data 8 i e
valid 0 EEREER RN E R R R R R ERE R R EREREREREN
» decimFactor 2 4 I8
¥ Ouiput Signals
P data
— wvalid

Vector Input

This section shows the output of the System object for a vector input with different R, M, and N
values.

This figure shows the output of the System object for a two-element column vector input with the
default configuration, that is, with a fixed decimation rate and DecimationFactor,
DifferentialDelay, and NumSections values of 2, 1, and 2, respectively. The latency of the object
is 12 clock cycles.

Clock
¥ Input Signals
»data
—  wvalid
¥ Ouiput Signals
»data

—  valid

Cursor 1
Cursor 2

This figure shows the output of the System object for an eight-element column vector input with a
fixed decimation rate, R, M, and N values of 8, 1, and 3, respectively, and GainCorrection set to
true. The latency of the object is 44 clock cycles.
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Performance

The performance of the synthesized HDL code varies with your target and synthesis options. It also
varies based on the input data type.

This table shows the resource and performance data synthesis results of the object for a scalar input
of type fixdt(1,16,0) with fixed and variable decimation rates and for a two-element column
vector input with fixed decimation rate DecimationFactor, DifferentialDelay, and
NumSections values are 2, 1, and 2, respectively. The generated HDL is targeted to the Xilinx
Zyng-7000 ZC706 Evaluation Board.

Input Data Decimation Type |Slice LUTs Slice Registers Maximum Frequency in
MHz
Scalar Fixed rate 101 166 711.74
Variable rate 206 186 441.70
Vector Fixed rate 218 627 624.61
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The resources and frequencies vary based on the type of input data and the values of R, M, and N, as
well as other properties. Using a vector input can increase the throughput, however, doing so also
increases the number of hardware resources that the System object uses.

Version History
Introduced in R2019b

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this System object was named dsp.HDLCICDecimation and was included in the
DSP System Toolbox.

R2022a: Changes to decimation factor arguments
Behavior changed in R2022a

* You can now set the decimation factor to 1. In previous releases, a decimation factor of 1 was
invalid.

* ResetIn property is renamed to ResetInputPort.
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Configuration Before R2022a After 2022a

Variable decimation factor Select the Set the DecimationSource
VariableDownsample property to Input port and
property and set the set the MaxDecimationFactor
DecimationFactor parameter |property to the maximum
to the maximum expected expected decimation factor. The
decimation factor. decimFactor portis renamed

to R.

Fixed decimation factor Clear the Set the DecimationSource
VariableDownsample property to Property and set
property and set the the DecimationFactor
DecimationFactor property |property to the desired
to the desired decimation factor. |decimation factor.

R2021b: High-throughput interface

The object accepts and returns a column vector of elements that represent samples in time. The input
vector can contain up to 64 samples. When you use frame-based input, you must use a fixed
decimation factor.

R2020a: Gain correction and programmable decimation factor

You can optionally enable automatic gain correction. You can also specify the decimation factor as an
input argument.

References
[1] Hogenauer, E. “An Economical Class of Digital Filters for Decimation and Interpolation.” IEEE

Transactions on Acoustics, Speech, and Signal Processing 29, no. 2 (April 1981): 155-62.
https://doi.org/10.1109/TASSP.1981.1163535.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The software supports double and single data types for simulation, but not for HDL code
generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).
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See Also

Objects
dsphdl.CICInterpolator

Blocks
CIC Decimator | CIC Interpolator
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dsphdl.FIRFilter

Package: dsphdl

Finite-impulse response filter

Description

The dsphdl.FIRFilter System object models finite-impulse response filter architectures optimized
for HDL code generation. The object accepts scalar or vector input, supports multichannel input, and
provides an option for programmable coefficients by using a parallel interface or a memory interface.
It provides a hardware-friendly interface with input and output control signals. To provide a cycle-
accurate simulation of the generated HDL code, the object models architectural latency including
pipeline registers and resource sharing.

The object provides three filter structures.
* The direct form systolic architecture provides a fully parallel implementation that makes efficient

use of Intel and Xilinx DSP blocks.

* The direct form transposed architecture is a fully parallel implementation and is suitable for FPGA
and ASIC applications.

» The partly serial systolic architecture provides a configurable serial implementation that makes
efficient use of FPGA DSP blocks.

For a filter implementation that matches multipliers, pipeline registers, and pre-adders to the DSP
configuration of your FPGA vendor, specify your target device when you generate HDL code.

All single-channel filter structures remove multipliers for zero-valued coefficients, such as in half-
band filters and Hilbert transforms. When you use scalar input data, all filter structures share
multipliers for symmetric and antisymmetric coefficients. Frame-based filters and multichannel filters
do not implement symmetry optimization, and multichannel filters do not remove multipliers for zero-
valued coefficients. Multichannel filters share resources between channels, even if the filter
coefficients are different across the channels.

The latency between valid input data and the corresponding valid output data depends on the filter
structure, serialization options, the number of coefficients, and whether the coefficient values provide
optimization opportunities. For details of structure and latency, see “FIR Filter Architectures for
FPGAs and ASICs”.

To filter input data with an HDL-optimized FIR filter:

1 Create the dsphdl.FIRFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
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Creation

Syntax

firFilt = dsphdl.FIRFilter

firFilt = dsphdl.FIRFilter(num)

firFilt = dsphdl.FIRFilter(  ,Name,Value)
Description

firFilt = dsphdl.FIRFilter creates an HDL-optimized discrete FIR filter System object,
firFilt, with default properties.

firFilt

dsphdl.FIRFilter(num) creates a filter with the Numerator property set to num.

firFilt = dsphdl.FIRFilter( ___ ,Name,Value) sets properties using one or more name-
value arguments. Enclose each property name in single quotes.

For example:

Numerator = firpm(10,[0,0.1,0.5,1],[1,1,0,0]);
fir = dsphdl.FIRFilter(Numerator, 'FilterStructure', 'Direct form transposed');

iéétaOut,validOut] = fir(dataln,validIn);

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Main

NumeratorSource — Source of filter coefficients
'Property’' (default) | 'Input port (Parallel interface)' | 'Input port (Memory
interface)'

You can enter constant filter coefficients as a property, provide time-varying filter coefficients using
an input argument, or provide time-varying filter coefficients using a memory-style interface.

You cannot use programmable coefficients with multichannel data.
When you select 'Input port (Parallel interface)', the object has the coeff argument.

When you select 'Input port (Memory interface)', the object has a memory-style interface
with the coeff, caddr, cwren, and cdone arguments.

Setting this property to 'Input port (Parallel interface)' or 'Input port (Memory
interface)' enables the NumeratorPrototype property. Specify a prototype to enable the object
to optimize the filter implementation according to the values of the coefficients.
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When you use programmable coefficients with frame-based input, the object does not optimize the
filter for coefficient symmetry. Also, the output after a change of coefficient values might not match
the output in the scalar case exactly. This difference occurs because the subfilter calculations are
performed at different times relative to the input coefficient values, compared with the scalar
implementation.

Dependencies

Touse 'Input port (Parallel interface)', setthe FilterStructure propertyto 'Direct
form systolic' or 'Direct form transposed'.

Numerator — Discrete FIR filter coefficients
[0.5 0.5] (default) | row vector | multichannel matrix

Discrete FIR filter coefficients, specified as a row vector of real or complex values. You can specify
multichannel coefficients with a K-by-L matrix of real or complex values, where K is the number of
channels and L is the filter length.

You can also specify the vector as a workspace variable, or as a call to a filter design function. When
the input data type is a floating-point type, the object casts the coefficients to the same data type as
the input. When the input data type is an integer type or a fixed-point type, you can modify the
coefficient data type by using the CoefficientsDataType property.

Example: dsphdl.FIRFilter('Numerator', firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]))
defines coefficients using a linear-phase filter design function.

Dependencies
To enable this property, set NumeratorSource to 'Property".

NumeratorPrototype — Prototype filter coefficients
[ 1 (default) | real or complex vector

Prototype filter coefficients, specified as a vector of real or complex values. The prototype specifies a
sample coefficient vector that is representative of the symmetry and zero-value locations of the
expected input coefficients. If all input coefficient vectors have the same symmetry and zero-value
coefficient locations, set NumeratorPrototype to one of those vectors. The object uses the
prototype to optimize the filter by sharing multipliers for symmetric or antisymmetric coefficients and
by removing multipliers for zero-value coefficients.

When you use frame-based input data, the object does not optimize the filter for coefficient symmetry.

The object still uses the NumeratorPrototype proeprty to remove multipliers for zero-valued
coefficients.
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NumeratorSource

Input Size

If No Prototype

"Input port (Parallel
interface)'

When you use scalar input data,
coefficient optimizations affect
the expected size of the vector
in the coeff argument. Provide
only the nonduplicate
coefficients as the argument.
For example, if you set the
NumeratorPrototype
property to a symmetric 14-tap
filter, the block shares one
multiplier between each pair of
duplicate coefficients, so the
block expects a vector of 7
values in the coeff argument.
You must still provide zeros in
the input coeff vector for the
nonduplicate zero-valued
coefficients.

When you use frame-based
input data, specify a coeff
vector that is the same size as
the prototype.

If your coefficients are unknown
or not expected to share
symmetry or zero-valued
locations, you can set the
NumeratorPrototype
property to [].

"Input port (Memory
interface)'

Write the same number of
coefficient values as the size of
the prototype.

The NumeratorPrototype
property cannot be empty. The
object uses the prototype to
determine the size of the
coefficient memory. If your
coefficients are unknown or not
expected to share symmetry or
zero-valued locations, set
NumeratorPrototype to a
vector with the same length as
your expected coefficients,
which does not contain
symmetry or zero values, for
example [1:1:NumCoeffs].

Dependencies

To enable this property, set NumeratorSource to 'Input port (Parallel interface)' or
"Input port (Memory interface)'.

FilterStructure — HDL filter architecture
'Direct form systolic' (default) | 'Direct form transposed' | 'Partly serial

systolic'

HDL filter architecture, specified as one of these structures:

* 'Direct form systolic' — This architecture provides a fully parallel filter implementation
that makes efficient use of Intel and Xilinx DSP blocks. For architecture details, see “Fully Parallel
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Systolic Architecture”. When you specify multichannel coefficients with this architecture, the
object interleaves the channel coefficients over a single parallel filter.

* 'Direct form transposed' — This architecture is a fully parallel implementation that is
suitable for FPGA and ASIC applications. For architecture details, see “Fully Parallel Transposed
Architecture”. When you specify multichannel coefficients with this architecture, the object
interleaves the channel coefficients over a single parallel filter.

* 'Partly serial systolic' — This architecture provides a serial filter implementation and
options for tradeoffs between throughput and resource utilization. The architecture makes
efficient use of Intel and Xilinx DSP blocks. The object implements a serial L-coefficient filter with
M multipliers and requires input samples that are at least N cycles apart, such that L = NxM. You
can specify either M or N. For this implementation, the object provides the ready output
argument which indicates when the object is ready for new input data. For architecture and
performance details, see “Partly Serial Systolic Architecture (1 < N < L)” and “Fully Serial
Systolic Architecture (N = L)”. You cannot use frame-based input with the partly serial
architecture.

When you specify multichannel coefficients with a serial architecture, you must specify the
serialization factor as the number of cycles between valid input samples. For multichannel input
that is scalar and interleaved over the channels, the object implements a partly serial filter with
L/N multipliers when N < L, and a fully serial filter when N >= L. When your multichannel input
is a 1-by-K vector, where K is the number of channels, the object implements a partly serial filter
with LxK/N multipliers when 2xK <= N < LXK and a fully serial filter when N >= LXK,

All single-channel implementations remove multipliers for zero-valued coefficients. When you use
scalar input data, single-channel implementations share multipliers for symmetric and antisymmetric
coefficients. Frame-based filters do not implement symmetry optimization. Multichannel filters do not
optimize for symmetric or zero-valued coefficients. Multichannel filters share resources between
channels, even if the filter coefficients are different across the channels.

SerializationOption — Rule to define serial implementation
'Minimum number of cycles between valid input samples' (default) | 'Maximum number
of multipliers'

Specify the rule that the object uses to serialize the filter as either:

* 'Minimum number of cycles between valid input samples' — Specify a requirement
for input data timing by using the NumCycles property.

* 'Maximum number of multipliers' — Specify a requirement for resource usage by using the
NumberOfMultipliers property. This option is not supported when you have multichannel
coefficients.

For a filter with L coefficients, the object implements a serial filter with not more than M multipliers
and requires input samples that are at least N cycles apart, such that L = NxM. The object might
remove additional multipliers when it applies coefficient optimizations, so the actual M or N values of
the filter implementation might be lower than the specified value.

For multichannel input that is scalar and interleaved over the channels, the object implements a
partly serial filter with L/N multipliers when N < L, and a fully serial filter when N >= L. When your
multichannel input is a 1-by-K vector, where K is the number of channels, the object implements a
partly serial filter with LxK/N multipliers when 2xK <= N < LXK and a fully serial filter when N >=
LXxK.
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Dependencies
To enable this property, set FilterStructure to 'Partly serial systolic'.

NumCycles — Serialization requirement for input timing
2 (default) | positive integer

Serialization requirement for input timing, specified as a positive integer. This property represents N,
the minimum number of cycles between valid input samples. In this case, the object calculates M =
L/N. To implement a fully serial architecture, set NumCycles to a value greater than the filter length,
L, or to Inf. To implement a fully serial architecture for a multichannel filter with 1-by-K vector
input, set NumCycles to a value greater than LxK, where K is the number of channels.

The object might remove multipliers when it applies coefficient optimizations, so the actual M and N
values of the filter might be lower than the specified value.

Dependencies

To enable this property, set FilterStructure to 'Partly serial systolic' and set
SerializationOptionto 'Minimum number of cycles between valid input samples'.

NumberOfMultipliers — Serialization requirement for resource usage
2 (default) | positive integer

Serialization requirement for resource usage, specified as a positive integer. This property represents
M, the maximum number of multipliers in the filter implementation. In this case, the object calculates
N = L/M. If the input data is complex, the object allocates floor (M/2) multipliers for the real part
of the filter and floor(M/2) multipliers for the imaginary part of the filter. To implement a fully
serial architecture, set NumberOfMultipliers to 1 for real input with real coefficients, 2 for
complex input and real coefficients or real coefficients with complex input, or 3 for complex input and
complex coefficients.

The object might remove multipliers when it applies coefficient optimizations, so the actual M and N
values of the filter might be lower than the specified value.

Dependencies

To enable this property, set the FilterStructure to 'Partly serial systolic', and set
SerializationOptionto 'Maximum number of multipliers'.

You cannot use this property when you specify multichannel coefficients. Use the NumCycles
property instead.

Data Types

Rounding — Rounding method for type-casting the output
'"Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method for type-casting the output, specified as 'Floor', 'Ceiling', 'Convergent’,
'Nearest', 'Round’, or 'Zero'. The rounding method is used when casting the output to the data
type specified by the OutputDataType property. When the input data type is floating point, the
object ignores the RoundingMethod property. For more details, see “Rounding Modes”.

OverflowAction — Overflow handling for type-casting the output
'Wrap' (default) | 'Saturate’
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Overflow handling for type-casting the output, specified as 'Wrap' or 'Saturate'. Overflow
handling is used when casting the output to the data type specified by the OutputDataType

property. When the input data type is floating point, the object ignores the OverflowAction

property. For more details, see “Overflow Handling”.

CoefficientsDataType — Data type of discrete FIR filter coefficients
‘Same word length as input' (default) | numerictype object

Data type of discrete FIR filter coefficients, specified as 'Same word length as input' ora
numerictype object. To specify a numerictype object, call numerictype(s,w, f), where:

* s is 1 for signed and 0 for unsigned.

* wis the word length in bits.

« f is the number of fractional bits.

The object type-casts the filter coefficients of the discrete FIR filter to the specified data type. The

quantization rounds to the nearest representable value and saturates on overflow. When the input
data type is floating point, the ohject ignores the CoefficientsSataType property.

Dependencies
To enable this property, set NumeratorSource to 'Property".

OutputDataType — Data type of discrete FIR filter output
"Full precision' (default) | 'Same word length as input' | numerictype object

Data type of discrete FIR filter output, specified as 'Same word length as input', 'Full
precision', or a numerictype object. To specify a numerictype object, call
numerictype(s,w, f), where:

* sis 1 for signed and 0 for unsigned.

* wis the word length in bits.

» T is the number of fractional bits.

The object type-casts the output of the discrete FIR filter to the specified data type. The quantization

uses the settings of the RoundingMethod and OverflowAction properties. When the input data
type is floating point, the object ignores the OutputDataType property.

The object increases the word length for full precision inside each filter tap and casts the final output
to the specified type. The maximum final internal data type (WF) depends on the input data type (WI),
the coefficient data type (WC), and the number of coefficients (L), and is given by

WF = WI + WC + ceil(log2(L)).

When you specify a fixed set of coefficients, the actual full-precision internal word length is usually
smaller than WF because the values of the coefficients limit the potential growth. When you use
programmable coefficients, the object cannot calculate the dynamic range, and the internal data type
is always WF.

Control Arguments

ResetInputPort — Option to enable reset input argument
false (default) | true
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Option to enable the reset input argument, specified as true or false. When you set this property
to true, the object expects a value for the reset input argument. The reset signal implements a
local synchronous reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

HDLGlobalReset — Option to connect data path registers to generated HDL global reset
signal
false (default) | true

Option to connect the data path registers to the generated HDL global reset signal, specified as true
or false. Set this property to true to connect the generated HDL global reset signal to the data
path registers. This property does not change the arguments of the object or modify simulation
behavior in MATLAB. When you set this property to false, the generated HDL global reset clears
only the control path registers. The generated HDL global reset can be synchronous or asynchronous
depending on your HDL code generation settings.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Usage

Syntax

[dataOut,validOut] = firFilt(datalIn,validIn)
[dataOut,validOut, ready] = firFilt(dataln,validIn)
[dataOut,validOut] firFilt(dataIn,validIn, coeff)
[dataOut,validOut] firFilt(dataIn,validIn, coeff,caddr,cwren, cdone)
[dataOut,validOut] firFilt(dataIn,validIn, reset)

Description

[dataOut,validOut]
true.

firFilt(dataIn,validIn) filters the input data only when validIn is

[dataOut,validOut, ready] = firFilt(dataln,validIn) returns ready set to true when
the object is ready to accept new input data on the next call.

The object returns the ready argument only when you set the FilterStructure property to
'"Partly serial systolic'. For example:

firFilt = dsphdl.FIRFilter(Numerator,...
'"FilterStructure','Partly serial systolic',...
'SerializationOption', '"Minimum number of cycles between valid input samples',...
'"NumCycles',8)

%é; k=1:1length(dataln)
[dataOut,validOut, ready] = firFilt(dataIn(k),validIn(k));

[datalOut,validOut] = firFilt(datalIn,validIn,coeff) filters data using the coefficients
coeff. Use this syntax when you set the NumeratorSource property to 'Input port (Parallel
interface) '. For example:

firFilt = dsphdl.FIRFilter(NumeratorSource, 'Input Port (Parallel interface)')

Numerator = myGetNumerator(); % calculate coefficients
for k=1:length(dataIn)
[dataOut(x),validOut(x++)] = firFilt(dataIn(k),validIn(k),Numerator);
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[dataOut,validOut] = firFilt(dataln,validIn,coeff,caddr,cwren,cdone) loads the
coefficient value coeff to the caddr memory location, when cwren is 1 (true). Set cdone to 1
(true) after you finish writing coefficients. The object ignores any input data provided when cwren is
1 (true), but still returns dataOut with validOut until it clears the filter pipeline. Use this syntax
when you set the NumeratorSource property to 'Input port (Memory interface)'. For
example:

firFilt = dsphdl.FIRFilter(NumeratorSource, 'Input Port (Memory interface)')

for k=1:length(Numerator)

[dataOut(x),validOut(x++)] = firFilt(0,0,Numerator(k),k,true, (k==length(Numerator));
for k=1:1length(dataln)
[dataOut(x),validOut(x++)] = firFilt(dataIn(k),validIn(k),0,0,false,false);

[dataOut,validOut] = firFilt(dataln,validIn, reset) filters data when reset is false.
When reset is true, the object resets the filter registers. The object expects the reset argument
only when you set the ResetInputPort property to true. For example:

firFilt = dsphdl.FIRFilter(Numerator, 'ResetInputPort',true)

% reset the filter
firFilt (0, false, true);
for k=1:1length(dataln)

[dataOut (x),validOut(x++)] = firFilt(dataIn(k),validIn(k), false);

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Input Arguments

dataIn — Input data
scalar | column vector | row vector

Input data, specified as a scalar, column vector, or row vector of real or complex values. Use a column
vector to increase throughput by processing samples in parallel. You can use a row vector to
represent multiple channels, or you can provide scalar data with channels interleaved. The channels
can have independent filter coefficients.

The size of the row or column vector must be less than or equal to 64 elements.

The software supports double and single data types for simulation, but not for HDL code
generation.

Data Types: fi | single | double | int8 | int16 | int32 | uint8 | uintl6 | uint32
Complex Number Support: Yes

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validInis 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataln argument.

Data Types: logical

coeff — Filter coefficients (Parallel interface)
real or complex vector
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Filter coefficients, specified as a vector of real or complex values. You can change the input
coefficients at any time. When you use scalar input data, the size of the vector depends on the size
and symmetry of the sample coefficients specified in the NumeratorPrototype property. The
prototype specifies a sample coefficient vector that is representative of the symmetry and zero-value
locations of the expected input coefficients. The object uses the prototype to optimize the filter by
sharing multipliers for symmetric or antisymmetric coefficients, and by removing multipliers for zero-
value coefficients. Therefore, provide only the nonduplicate coefficients in the argument. For
example, if you set the NumeratorPrototype property to a symmetric 14-tap filter, the object
expects a vector of 7 values for the coeff argument. You must still provide zeros in the input coeff
vector for the nonduplicate zero-value coefficients.

When you use frame-based input data, the object does not optimize the filter for coefficient symmetry.
The object still uses the NumeratorPrototype property to remove multipliers for zero-valued
coefficients. Specify an input coeff vector that is the same size as the prototype.

The software supports double and single data types for simulation, but not for HDL code
generation.

Dependencies

To enable this argument, set the NumeratorSource property to ' Input port (Parallel
interface)'.
Data Types: fi | single | double | int8 | intl1l6 | int32 | uint8 | uintl6 | uint32

coeff — Filter coefficients (Memory interface)
real or complex scalar

Filter coefficients, specified as a real or complex scalar value to write to internal memory. To load a
single coefficient value to internal memory, specify a coeff value with a corresponding address in
the caddr argument and an enable signal in the cwren argument. You can change the input
coefficients at any time.

While you write new coefficients into memory, the object ignores any input data, but still returns
dataOut with validOut until it clears the filter pipeline. The object resumes accepting input once
cdoneissetto 1 (true).
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The coefficient memory has the same number of addresses as the size of the NumeratorPrototype
property. The prototype specifies a sample coefficient vector that is representative of the symmetry
and zero-valued locations of the expected input coefficients. When you use scalar input data, the
object uses the prototype to optimize the filter by sharing multipliers for symmetric or antisymmetric
coefficients, and by removing multipliers for zero-valued coefficients. You must write the entire set of
coefficients to the memory, including symmetric or zero-value coefficients. For example, if you set the
NumeratorPrototype property to a symmetric 14-tap filter, you must write 14 values to the memory
interface.

When you use frame-based input data, the object does not optimize the filter for coefficient symmetry.
The block still uses the NumeratorPrototype property to remove multipliers for zero-valued
coefficients. The coefficient memory has the same number of locations as the size of the prototype.

The software supports double and single data types for simulation, but not for HDL code
generation.

Dependencies

To enable this argument, set the NumeratorSource property to ' Input port (Memory
interface)'.

Data Types: fi | single | double | int8 | int1l6 | int32 | uint8 | uintl6 | uint32

caddr — Filter coefficient address (Memory interface)
scalar

Specify the filter coefficient address as a scalar integer value represented as an unsigned fixed-point
type with zero fractional bits. The object derives the size of this integer value, and the size of the
internal memory, from the number of unique coefficients in the NumeratorPrototype property
value.

The software supports double and single data types for simulation, but not for HDL code
generation.

Dependencies

To enable this argument, set the NumeratorSource property to ' Input port (Memory
interface)'.

Data Types: T1(0,N,0)
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cwren — Filter coefficient write enable (Memory interface)
scalar

Set this argument to 1 (true) to write the value of the coeff argument into the caddr location in
internal memory.

The software supports double and single data types for simulation, but not for HDL code
generation.

Dependencies

To enable this argument, set the NumeratorSource property to 'Input port (Memory
interface)'.

Data Types: Ti(0,N,0)

cdone — Filter coefficients write complete (Memory interface)
scalar

Set this argument to 1 (true) to indicate that the current arguments write the final coefficient value
to memory.

The software supports double and single data types for simulation, but not for HDL code
generation.

Dependencies

To enable this argument, set the NumeratorSource property to ' Input port (Memory
interface)'.

Data Types: T1(0,N,0)

reset — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set the ResetInputPort property to true.

Data Types: logical
Output Arguments

dataOut — Filtered output data
scalar | column vector | row vector

Filtered output data, returned as a scalar, column vector, or row vector of real or complex values. The
dimensions of the output data match the dimensions of the input data. When the input data is floating
point, the output data inherits the data type of the input data. When the input data is an integer type
or fixed-point type, the OutputDataType property determines the output data type.
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Data Types: fi | single | double | int8 | intl1l6 | int32 | uint8 | uintl6 | uint32

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validQut is 0 (false), values from the
dataOut argument are not valid.

Data Types: logical

ready — Indicates object is ready for new input data
scalar

Control signal that indicates that the object is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the dataIn and validIn inputs for the next time step.
When ready is 0 (false), the object ignores any input data in the next time step.

When using the partly serial architecture, the object processes one sample at a time. If your design
waits for the object to return ready set to 0 (false) before setting validIn to 0 (false), then one
additional input data value arrives at the object. The object stores this additional data while
processing the current data, and does not set ready to 1 (true) until the additional input is
processed.

Dependencies

To enable this argument, set the FilterStructure property to 'Partly serial systolic'.

Data Types: logical

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsphdl.FIRFilter
getLatency Latency of FIR filter

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Create HDL FIR Filter System Object with Default Settings

Create an HDL FIR filter System object with default settings.
firFilt = dsphdl.FIRFilter;
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Create an input signal of random noise, and allocate memory for outputs.

L = 100;

dataIn = randn(L,1);
dataOut = zeros(L,1);
validOut = false(L,1);

Call the object on the input signal, asserting that the input data is always valid. The object processes
one data sample at a time.

for k=1:L
[datalOut (k),validOut(k)] = firFilt(dataIn(k),true);
end

Implement a Partly-Serial Streaming FIR Filter

This example shows how to configure the dsphdl.FIRFilter System object™ as a partly-serial 31-
tap lowpass filter.

Design the filter coefficients. Then create an HDL FIR filter System object. Set the
FilterStructureto 'Partly serial systolic'. By default, the SerializationOption
property is 'Minimum number of cycles between valid input samples', and so you must
specify the serialization rule using the NumCycles property. To share each multiplier between 10
coefficients, set the NumCycles to 10.

numerator = firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]);
numCycles = 10;
firFilt = dsphdl.FIRFilter('Numerator',numerator,
'"FilterStructure', 'Partly serial systolic', 'NumCycles', numCycles);

This serial filter implementation requires 10 time steps to calculate each output. Create input signals
dataln and validIn such that new data is applied only every NumCycles time steps.

L = 16;

x = fi(randn(L,1),1,16);

datalIn = zeros(L*numCycles,1, 'like',x);
dataIn(l:numCycles:end) = Xx;

validIn = false(L*numCycles,1);
validIn(1l:numCycles:end) = true;

Create a LogicAnalyzer object to view the inputs and output signals.

la = dsp.LogicAnalyzer('NumInputPorts"',5, ...
'SampleTime',1, 'TimeSpan',length(dataln));
tags = getDisplayChannelTags(la);
modifyDisplayChannel(la,tags{1l}, 'Name', 'dataln');
modifyDisplayChannel(la,tags{2}, 'Name', 'validIn');
modifyDisplayChannel(la,tags{3}, 'Name', 'datalut');
modifyDisplayChannel(la,tags{4}, 'Name', 'validOut');
modifyDisplayChannel(la,tags{5}, ‘Name', 'ready"');

Call the filter System object on the input signals, and view the results in the Logic Analyzer. The
object models HDL pipeline registers and resource sharing, so the waveform shows an initial delay
before the object returns valid output samples.
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for k=1:1length(dataln)
[dataOut,validOut, ready] = firFilt(dataIn(k),validIn(k));
la(dataIn(k),validIn(k),dataOut,validOut, ready)

end

E %‘L [;'L ﬁ Lock Q& L‘k @

Addva  Add\a Add\a a2 Find | Settings
Divider Group Curser i
EDIT CURSORS Z0O0OM St PAM | FIND | GLOBAL

»dataln

o R W
| | O | N | I
L. n ftT. "t n nn "t n.n.n ft.n11n"n

Cursor 1

Create HDL FIR Filter System Object for HDL Code Generation

To generate HDL code from a System object™, create a function that contains and calls the object.
Create Function

Write a function that creates and calls an 11-tap HDL FIR filter System object. You can generate HDL

code from this function.

function [datalOut,validOut] = HDLFIR11lTap(dataln, validIn)
%HDLFIR11Tap
% Process one sample of data by using the dsphdl.FIRFilter System
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object.
datalIn is a fixed-point scalar value.
You can generate HDL code from this function.
persistent fir
if isempty(fir)
Numerator = firpm(10,[0 0.1 0.5 1],[1 1 0 0]);
fir = dsphdl.FIRFilter('Numerator', Numerator);

o° o o°

end
[dataOut,validOut] = fir(dataIn,validIn);
end

Create Test Bench for Function

Clear the workspace, create an input signal of random noise, and allocate memory for outputs.

clear variables

clear HDLFIR11Tap

L = 200;

datalIn = fi(randn(L,1),1,16);
validIn ones(L,1, 'logical');
datalOut fi(zeros(L,1),1,16);
validOut = false(L,1);

Call the function on the input signal.
for k = 1:L

[dataOut(k),validOut(k)] = HDLFIR11lTap(dataIn(k), validIn(k));
end

Plot the signals with the Logic Analyzer.

la = dsp.LogicAnalyzer('NumInputPorts',4, 'SampleTime"',1, 'TimeSpan',L);
tags = getDisplayChannelTags(la);

modifyDisplayChannel(la,tags{1}, ‘Name', 'validIn');
modifyDisplayChannel(la, tags{2}, ‘Name', 'dataln');
modifyDisplayChannel(la,tags{3}, '‘Name', 'dataOut');

modifyDisplayChannel(la,tags{4}, 'Name'
la(validIn,dataln,dataOut,validOut)

'validOut');
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Explore Latency of FIR Object

The latency of the dsphdl.FIRFilter System object™ varies with filter structure, serialization
options, input vector size, and whether the coefficient values provide optimization opportunities. Use
the getLatency function to find the latency of a particular configuration. The latency is the number
of cycles between the first valid input and the first valid output.

Create a dsphdl.FIRFilter System object™ and request the latency. The default architecture is
fully parallel systolic. The default data type for the coefficients is 'Same word length as input'.
Therefore, when you call the getLatency object function, you must specify an input data type. The
object casts the coefficient values to the input data type, and then checks for symmetric coefficients.
This Numerator has 31 symmetric coefficients, so the object optimizes for the shared coefficients,
and implements 16 multipliers.

Numerator = firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]);

Input _type = numerictype(1,16,15); % object uses only the word length for coefficient type cast
hdlfir = dsphdl.FIRFilter('Numerator',Numerator);

L sysp = getLatency(hdlfir,Input type)
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L sysp =

23

For the same fully parallel filter with vector input, the latency is lower. Call getLatency with an
input vector size of four to check the latency for that case. The empty arguments are placeholders for
when you use programmable coefficients or complex input data.

L syspv

L syspv

Check the
Serializ

getLatency(hdlfir,Input_type,[],[1,4)

17

latency for a partly serial systolic implementation of the same filter. By default, the
ationOption propertyis '"Minimum number of cycles between valid input

samples', and so you must specify the serialization rule using the NumCycles property. To share
each multiplier between 8 coefficients, set the NumCycles to 8. The object then optimizes based on
the coefficient symmetry, so there are 16 unique coefficients shared 8 times each over 2 multipliers.

This serial

hdlfir
L_syss

L syss
Check the

Numerator
hdlfir
L sysp

L sysp
Check the

filter implementation requires input samples that are valid every 8 cycles.

dsphdl.FIRFilter('Numerator',Numerator, 'FilterStructure', 'Partly serial systolic', 'NumC
getLatency(hdlfir,Input type)

19

latency of a nonsymmetric fully parallel systolic filter. The Numerator has 31 coefficients.
= sinc(0.4%[-30:0]1);

dsphdl.FIRFilter('Numerator',Numerator);

getLatency(hdlfir,Input type)

37

latency of the same nonsymmetric filter implemented as a partly serial systolic filter. In this

case, specify the SerializationOption by the number of multipliers. The object implements a
filter that has 2 multipliers and requires 8 cycles between input samples.

hdlfir

L syss
L syss =

Check the

dsphdl.FIRFilter('Numerator', Numerator, 'FilterStructure', 'Partly serial systolic',...
'SerializationOption', '"Maximum number of multipliers', 'NumberOfMultipl
getLatency(hdlfir,Input_type)

37

latency of a fully parallel transposed architecture. The latency for this filter structure with

scalar input is always 6 cycles.

hdlfir =
L trans =

L trans =

dsphdl.FIRFilter('Numerator', Numerator, 'FilterStructure', 'Direct form transposed');
getLatency(hdlfir,Input type)

6

The latency of the transposed filter increases with input vector size.

L transv4
L transv4
L transv8

L transv8

getLatency(hdlfir,Input_type,[],[]1,4)
9

= getLatency(hdlfir,Input type,[]1,[],16)

11
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Algorithms

This System object implements the algorithms described on the Discrete FIR Filter block reference
page.

Version History
Introduced in R2017a

R2023a: Load coefficients using memory-style interface

This object offers an optional memory-style interface to load coefficients. To use this interface, set the
NumeratorSource property to 'Input port (Memory interface)'. You can use this coefficient
interface with any filter architecture.

R2023a: Multichannel support

Specify coefficients as an L-by-K matrix, where L is the filter length and K is the number of channels.
You can supply input data as a 1-by-K row-vector or as scalar input with the channels interleaved in
time. The filter shares resources between channels, even if the filter coefficients are different across
the channels. If the input data channels have enough cycles between valid input samples, the object
can implement the multichannel filter as a single fully-serial FIR filter.

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this System object was named dsp.HDLFIRFilter and was part of the DSP System
Toolbox product.

R2022a: High-throughput interface

This object supports high-throughput data. You can apply input data as an N-by-1 vector, where N can
be up to 64 values. You cannot use frame-based input with the partly serial architecture.

R2022a: Input coefficients must be a row vector
Behavior changed in R2022a

When you use programmable coefficients with this object, you must supply the coefficients as a row
vector (1-by-N matrix). Before R2022a, the object accepted a one-dimensional array (for example,
ones(5)), a column vector (M-by-1 matrix), or a row vector of coefficients.

R2022a: RAM-based partly serial architecture
This object uses a RAM-based partly serial architecture, which uses fewer resources than the former
register-based architecture. Uninitialized RAM locations can result in X values at the start of your

HDL simulation. You can avoid X values by having your test initialize the RAM.

R2019b: Complex coefficients
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The object supports complex-valued coefficients. If both coefficients and input data are complex, the
object implements each filter tap with three multipliers. If either data or coefficients are complex but
not both, the object uses two multipliers for each filter tap. You can use complex coefficients with all
architectures and with programmable coefficients.

R2019a: Programmable coefficients

The object provides the option to specify coefficients using an input argument when you set the
FilterStructureto 'Direct form systolic'. You cannot use programmable coefficients with
transposed or partly serial systolic architectures.

R2019a: Optimize symmetric coefficients

The object provides optimization of symmetric and antisymmetric coefficients. This optimization
reduces the number of multipliers and makes efficient use of FPGA DSP resources.

In R2018D, the object performed these optimizations only for fully parallel architectures.

R2019a: Optional reset argument

The object provides an optional reset argument for any architecture, including a serial systolic
architecture with resource sharing. The reset argument provides a local synchronous reset of the
data path registers.

In R2018b, the object supported the reset argument only for fully parallel architectures.

R2019a: Changes to serial filter parameters
Behavior changed in R2019a

Before R2019a, you specified the serial implementation by setting a requirement for input timing.
Starting in R2019a, you can specify the serialization requirement based on either input timing or
resource usage.

For a filter with L coefficients, the object implements a serial filter with not more than M multipliers
and requires input samples that are at least N cycles apart, such that L = NxM.

Serial Filter Requirement Configuration Before R2019a |Configuration in R2019a
Specify a serialization rule o Setthe FilterStructure |e¢ Setthe FilterStructure
based on input timing, that is, N property to ‘Direct form property to 'Partly
cycles. systolic'. serial systolic'.
o Set the Sharing property to |* Set the
true. SerializationOption
*+ Setthe SharingFactor property to ‘Minimum
property to N. number of cyclt_as
between valid input
samples'.
o Set the NumberOfCycles
property to N.
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Serial Filter Requirement

Configuration Before R2019a

Configuration in R2019a

Specify a serialization rule
based on resource usage, that
is, M multipliers.

Serialization by resource usage
is not supported before R2019a.
However, you can calculate N
based on your multiplier
requirement.

o Setthe FilterStructure
property to 'Direct form
systolic'.

* Set the Sharing property to
true.

* Setthe SharingFactor
property to
ceil (NumCoeffs/M).

Set the FilterStructure
property to to 'Partly
serial systolic'.

Set the
SerializationOption
property to 'Maximum
number of
multipliers'.

Set the
NumberOfMultipliers
property to M.

R2018b: Transposed architecture

The object provides an option to select a direct form transposed architecture.

R2018b: Changes to parallel filter architecture

Behavior changed in R2018b

* The validIn argument is mandatory. The ValidInPort property is no longer available.

* The ready argument is enabled when you set SharingFactor to true and disabled when you
set Sharing to false. The ReadyPort property is no longer available.

* When you set the FilterStructure property to 'Direct form systolic' with Sharing set
to false, the object implements an improved fully parallel architecture compared to previous
releases. This architecture might have different latency than in previous versions. Use the
validOut signal to align with parallel delay paths. When using this architecture, the default
global HDL reset now clears only the control path registers. Previous releases connected the
global HDL reset to the data path registers and the control path registers. This change improves
hardware performance and lowers the resources used. To implement the same fully parallel
architecture as previous releases, set Sharing to false and set SharingFactor to 1.

* When you set the FilterStructure property to 'Direct form systolic', set

SharingFactor to true, and use any SerializationOption, the implemented filter has the
same latency and uses the same hardware resources as in previous releases. The reset behavior
for this architecture is also the same as in previous releases.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.
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The software supports double and single data types for simulation, but not for HDL code
generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also

Blocks
Discrete FIR Filter

Objects
dsp.FIRFilter

Topics

“FIR Filter Architectures for FPGAs and ASICs”
“High-Throughput HDL Algorithms”

“Hardware Control Signals”
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dsphdl.FarrowRateConverter

Package: dsphdl

Polynomial sample-rate converter

Description

The dsphdl.FarrowRateConverter System object converts the sample rate of a signal by using
FIR filters to implement a polynomial sinc approximation. A Farrow filter is an efficient rate converter
when the rate conversion factor is a ratio of large integer decimation and interpolation factors.
Specify the rate conversion factor by providing the input sample rate and the desired output sample
rate. You can provide the rate conversion factor as a fixed property or as a time-varying input signal.

You can use this object with the default coefficients for most rate conversions. The default coefficients
are a LaGrange interpolation that matches the dsp.FarrowRateConverter System object. Or, you
can specify a custom set of coefficients if the default does not meet your specifications.

The object provides a hardware-friendly interface with input and output control signals. To provide a
cycle-accurate simulation of the generated HDL code, the object models architectural latency
including pipeline registers and multiplier optimizations.

To filter and resample input data with an HDL-optimized Farrow rate converter:

1 Create the dsphdl.FarrowRateConverter object and set its properties.
2  (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

dsphdl.FarrowRateConverter
dsphdl.FarrowRateConverter(Name,Value)

rc
rc

Description

rc = dsphdl.FarrowRateConverter creates an HDL-optimized Farrow filter System object with
default properties.

rc = dsphdl.FarrowRateConverter(Name,Value) sets properties by using one or more name-
value pairs. Enclose each property name in single quotes.
For example:

rc = dsphdl.FarrowRateConverter('RateChange',441e3/96e3, ...
'FilterStructure','Direct form transposed');
[dataOut,validOut, ready] = rc(dataIn,validIn);
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Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Main

RateChangeSource — Source of rate change
'Property' (default) | 'Input port'

You can enter a constant rate change as a property or provide a time-varying rate change by using an
input argument.

Setting this property to ' Input port' enables the rate argument of the object.

RateChange — Rate change factor
147/160 (default) | positive real scalar

Specify the rate change factor as a ratio of the input sample rate and the output sample rate, F;,/
Fout, Or provide a rational value. There are no limits on the rate change factor. Specify the data type
for this value by using the RateChangeDataType property.

Dependencies

To enable this property, set RateChangeSource to 'Property'.
Data Types: double

Coefficients — FIR filter coefficients
[-1/6 1/2 -1/3 0;1/2 -1 -1/2 1;-1/2 1/2 1 0;1/6 0 -1/6 0] (default) | matrix of real
values

Specify FIR filter coefficients as an M-by-N matrix of real values, where N is the number of filters and
M is the number of coefficients in each filter. N must be less than six. The object implements a
polynomial of order N - 1. The default value is a special closed-form LaGrange solution that
accomplishes most rate changes.

Data Types: double

FilterStructure — HDL filter architecture
‘Direct form systolic' (default) | ‘Direct form transposed’

Specify the HDL filter architecture as one of these structures:

* 'Direct form systolic' — This architecture provides a fully parallel filter implementation
that makes efficient use of Intel and Xilinx DSP blocks. For architecture details, see “Fully Parallel
Systolic Architecture”.

* 'Direct form transposed' — This architecture is a fully parallel implementation that is
suitable for FPGA and ASIC applications. For architecture details, see “Fully Parallel Transposed
Architecture”.
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This object implements the FIR filter stages by using the same architectures as the
dsphdl.FIRFilter object. All implementations share multipliers for symmetric and antisymmetric
coefficients and remove multipliers for zero-valued coefficients.

NumCycles — Serialization requirement for input timing
1 (default) | positive integer

Serialization requirement for input timing, specified as a positive integer. This property represents N,
the minimum number of cycles between valid input samples. To implement a fully serial architecture,
set NumCycles to a value greater than the filter length, L, or to Inf.

When this property is greater than one, the object implements each FIR subfilter as a partly-serial
architecture that shares the multipliers in time.

Dependencies
To enable this property, set FilterStructure to 'Direct form systolic'.
Data Types

Rounding — Rounding method for type-casting the output
"Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method for type-casting the output, specified as 'Floor', 'Ceiling', 'Convergent’,
‘Nearest', 'Round’, or 'Zero'. The rounding method is used when casting the output to the data
type specified by the QutputDataType property. When the input data type is a floating-point data
type, the object ignores the RoundingMethod property. For more details, see “Rounding Modes”.

OverflowAction — Overflow handling for type-casting the output
‘Wrap' (default) | 'Saturate’

Overflow handling for type-casting the output, specified as 'Wrap' or 'Saturate'. Overflow
handling is used when casting the output to the data type specified by the OutputDataType
property. When the input data type is a floating-point data type, the object ignores the
OverflowAction property. For more details, see “Overflow Handling”.

CoefficientsDataType — Data type of discrete FIR filter coefficients
‘Same word length as input' (default) | numerictype object

Data type of discrete FIR filter coefficients, specified as 'Same word length as input' ora
numerictype object. To specify a numerictype object, call numerictype(s,w, f), where:

* sis 1 for signed and 0 for unsigned.

* wis the word length in bits.

« T is the number of fractional bits.

The object type-casts the filter coefficients of the discrete FIR filter to the specified data type. The

quantization rounds to the nearest representable value and saturates on overflow. When the input
data type is a floating-point data type, the object ignores this property.

The recommended data type for this parameter is 'Same word length as input'. When
selecting this data type, consider the size supported by the DSP blocks on your target FPGA.

RateChangeDataType — Data type of rate change factor
fixdt(1,16) (default) | <data type expression>
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The object casts the RateChange property value to this data type and uses this data type to derive
the data type for the internal accumulator. The accumulator data type is fixdt (1, fractionalWL
+1, fractionallWL), where fractional WL is the fraction length of the rate change data type. The
quantization rounds to the nearest representable value and saturates on overflow. When the input
data type is floating point, the object ignores this parameter.

The data type of the rate change must have at least one integer bit and one fractional bit. This data
type must have enough integer bits to represent the fsIn/fsOut value. If the data type specified
does not have enough integer bits, the object returns an error. The default setting does not specify a
number of fractional bits, so the object can compute the necessary integer size. The fractional part of
this data type determines the accuracy of the phase timing, but also increases the critical path. When
the rate change word length is large, you can limit hardware resources by fitting the multiplicand
data type to the DSP blocks on the FPGA.

Dependencies
To enable this port, set the RateChangeSource parameter to 'Property"'.

MultiplicandDataType — Data type of multiplicand
"Full precision' (default) | <data type expression>

The object casts the output of the accumulator to this data type. The quantization rounds to the
nearest representable value and saturates on overflow. When the input data type is a floating-point
data type, the object ignores this parameter. When the rate change is large, you can limit hardware
resource use by controlling the multiplicand data type. When selecting this data type, consider the
size supported by the DSP blocks on your target FPGA.

OutputDataType — Data type of filter output
‘Same word length as input' (default) | <data type expression>

The object casts the output of each filter stage to this data type. The quantization uses the settings of
the RoundingMethod and OverflowAction properties. When the input data type is a floating-point
data type, the object ignores this parameter.

Control Arguments

ResetInputPort — Option to enable reset input argument
false (default) | true

Option to enable the reset input argument, specified as true or false. When you set this property
to true, the object expects a value for the reset input argument. The reset signal implements a
local synchronous reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

HDLGlobalReset — Option to connect data path registers to generated HDL global reset
signal
false (default) | true

Option to connect the data path registers to the generated HDL global reset signal, specified as true
or false. Set this property to true to connect the generated HDL global reset signal to the data
path registers. This property does not change the arguments of the object or modify simulation
behavior in MATLAB. When you set this property to false, the generated HDL global reset clears
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only the control path registers. The generated HDL global reset can be synchronous or asynchronous
depending on your HDL code generation settings.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Usage

Syntax

rc(dataIn,validIn)
rc(dataIn,validIn, rate)

[dataOut,validOut, ready]
[dataOut,validOut, ready]

Description

[dataOut,validOut, ready] = rc(dataln,validIn) filters the input data only when validIn
is true, and returns ready set to true when the object is ready to accept new input data on the next
call.

[dataOut,validOut, ready] = rc(dataln,validIn, rate) filters data to achieve the input to
output sample rate ratio, rate. The object expects the rate argument only when you set the
RateChangeSource property to ' Input port'. For example:

rc = dsphdl.FarrowRateConverter('RateChangeSource', 'Input port')

%6} k=1:1length(dataln)

rate = myGetRate(); %calculate desired rate change
[dataOut(k),validOut (k)] = rc(dataIn(k),validIn(k),rate);

Input Arguments

dataln — Input data
real or complex scalar

Input data, specified as a real or complex scalar. When the input data type is an integer type or fixed-
point type, the object uses fixed-point arithmetic for internal calculations.

The software supports double and single data types for simulation, but not for HDL code
generation.

Data Types: fi | single | double | int8 | int16 | int32 | uint8 | uintl6 | uint32
Complex Number Support: Yes

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataln argument.

Data Types: Llogical

rate — Rate change factor
scalar

Specify the rate change factor as a rational value that is the ratio of the input sample rate and the
output sample rate, F;,/F,,:. There are no limits on the rate change factor.
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When this input value changes, the object resets the internal phase accumulator. This reset means
you can change the rate change factor from decimation to interpolation. For example, you can use
this object to align data streams that have similar but varying sample clocks.

The data type of the rate change must have at least one integer bit and one fractional bit. The object
derives the data type of the internal accumulator from the data type of this signal. The accumulator
data type is fixdt (1, fractionalWL+1, fractionalWL), where fractionalWL is the fraction length
of the rate change data type. The fractional WL determines the accuracy of the phase timing, but also
increases the critical path. When the rate change word length is large, you can limit hardware
resource use by fitting the multiplicand data type to the DSP blocks on the FPGA. .

Dependencies

To enable this port, set the RateChangeSource parameter to 'Input port'.
Data Types: fi

reset — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input validis 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set the ResetInputPort property to true.

Data Types: Logical
Output Arguments

dataOut — Filtered output data
real or complex scalar

Filtered output data, returned as a real or complex scalar. When the input data type is a floating-point
data type, the output data inherits the data type of the input data. When the input data type is an
integer type or fixed-point type, the OutputDataType property determines the output data type.

Data Types: fi | single | double

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validQut is 0 (false), values from the
dataOut argument are not valid.

Data Types: logical

ready — Indicates object is ready for new input data
logical scalar
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Control signal that indicates that the object is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the object ignores any input data in the next time step.

Data Types: logical

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Algorithms

This System object implements the algorithms described on the Farrow Rate Converter block
reference page.

Version History
Introduced in R2022a

R2022b: Partly serial filter architecture
The object now has the NumCycles property to enable resource sharing with a partly serial systolic

architecture. The internal FIR filter for each filter stage is implemented with a partly serial systolic
filter with the sharing factor that you specify.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The software supports double and single data types for simulation, but not for HDL code
generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).
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See Also

Blocks
Farrow Rate Converter

Objects
dsphdl.FIRFilter
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dsphdl.NCO

Package: dsphdl

Generate real or complex sinusoidal signals

Description

The NCO System object generates real or complex sinusoidal signals, while providing hardware-
friendly control signals. A numerically-controlled oscillator (NCO) accumulates a phase increment
and uses the quantized output of the accumulator as the index to a lookup table that contains the sine
wave values. The wrap around of the fixed-point accumulator and quantizer data types provide
periodicity of the sine wave, and quantization reduces the necessary size of the table for a given
frequency resolution.

LUT
Phase —————— e ey -
increment ! ) ! = sin, cos, Or exp
———| Accumulate » i Quantize !T- % —
i 1 - - 1 @
hhhhhhhhhhhhhhh o
0 address 2"

For an example of how to generate a sine wave using this System object, see “Design a HDL-
Compatible NCO Source” on page 2-74. For more information on configuration and implementation,
refer to the “Algorithms” on page 1-60 section.

The NCO System object provides these features.

* Optional frame-based output.

* Alookup table compression option to reduce the lookup table size. This compression results in
less than one LSB loss in precision. See “Lookup Table Compression” on page 2-77 for more
information.

* An optional input argument for external dither.
* An optional reset argument that resets the phase accumulator to its initial value.

* An optional output argument for the current NCO phase.

To generate real or complex sinusoidal signals:

1 Create the dsphdl.NCO object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?
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Creation

Syntax

hdlnco = dsphdl.NCO

hdlnco = dsphdl.NCO(Name,Value)

hdlnco = dsphdl.NCO(Inc, 'PhaseIncrementSource', 'Property"')
Description

hdlnco = dsphdl.NCO creates a numerically controlled oscillator (NCO) System object, hdlnco,
that generates a real or complex sinusoidal signal. The amplitude of the generated signal is always 1.

hdlnco = dsphdl.NCO(Name,Value) sets properties using one or more name-value pairs. Enclose
each property name in single quotes. For example,

hdlnco = dsphdl.NCO('NumQuantizerAccumulatorBits',612,
"AccumulatorWL',16);

hdlnco = dsphdl.NCO(Inc, 'PhaseIncrementSource', 'Property') creates an NCO with the
PhaseIncrement property set to Inc, an integer scalar. To use the Phaselncrement property, set the
PhaselncrementSource property to 'Property'. You can add other Name, Value pairs before or
after PhaseIncrementSource.

Properties

Note This object supports floating-point types for simulation but not for HDL code generation. When
all input values are fixed-point type or all input arguments are disabled, the object determines the
output type using the QutputDataType property. When any input value is floating-point type, the
object ignores the OutputDataType property. In this case, the object returns the waveform and
optional Phase as floating-point values.

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Waveform Generation

PhaseIncrementSource — Source of phase increment
"Input port' (default) | 'Property'

You can set the phase increment with an input argument or by specifying a value for the property.
Specify 'Property' to configure the phase increment using the PhaseIncrement property. Specify
"Input port' to set the phase increment using the inc argument.

PhaseIncrement — Phase increment for generated waveform
100 (default) | integer
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Phase increment for generated waveform, specified as an integer. The object casts this value to match
the accumulator word length.

Dependencies

To enable this property, set the PhaseIncrementSource property to 'Property'.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixdt([],N,0)

PhaseOffsetSource — Source of phase offset
"Input port' (default) | 'Property'

You can set the phase offset with an input argument or by specifying a value for the property. Specify
'"Property' to configure the phase increment using the PhaseOffset property. Specify ' Input
port' to set the phase increment using the offset argument.

PhaseOffset — Phase offset for generated waveform
0 (default) | integer

Phase offset for the generated waveform, specified as an integer.
Dependencies

To enable this property, set the PhaseOffsetSource property to 'Property"’.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixdt([]1,N,0)

DitherSource — Source of number of dither bits
"Input port' (default) | 'Property' | 'None'

You can set the number of dither bits from an input argument or from a property, or you can disable
dither. Specify 'Property' to configure the number of dither bits using the NumDitherBits
property. Specify 'Input port' to set the number of dither bits using the dither argument.
Specify 'None' to disable dither.

NumDitherBits — Bits used to express dither
4 (default) | positive integer

Number of dither bits, specified as a positive integer.

Dependencies
To enable this property, set the DitherSource property to 'Property"'.

SamplesPerFrame — Vector size for frame-based output
1 (default) | positive integer

Vector size for frame-based output, specified as a positive integer. When you set this value to 1, the
object has scalar input and output. When this value is greater than 1, the Dither input argument
must be a column vector of length SamplesPerFrame and the Y and Phase output arguments return
column vectors of length SamplesPerFrame.

LUTCompress — Lookup table compression
false or O (default) | trueor 1

Lookup table compression, specified as a logical 0 (false) or 1 (true). By default, the object
implements a noncompressed lookup table, and the output matches the output of the dsp.NCO
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System object. When you enable this option, the object implements a compressed lookup table. The
Sunderland compression method reduces the size of the lookup table, losing less than one LSB of
precision. The spurious free dynamic range (SFDR) is empirically 1-3 dB lower than the
noncompressed case. The hardware savings of the compressed lookup table allow room to improve
performance by increasing the word length of the accumulator and the number of quantize bits. For
details of the compression method, see “Algorithms” on page 2-75.

Waveform — Type of output waveform
'Sine' (default) | 'Cosine' | 'Complex exponential' | 'Sine and cosine'

Type of output waveform. If you select 'Sine' or 'Cosine’, the object returns a sin or cos value.
If you select 'Complex exponential', the output value, exp, is of the form cosine + j*sine.If
you select 'Sine and cosine', the object returns two values, sin and cos.

When you set the Waveform property to 'Complex exponential' or 'Sine and cosine'’, the
object implements a 1/8 sine wave lookup table for each of the sine and cosine parts of the waveform,
and uses control logic to select and invert the values to generate both sine and cosine waveforms.
This optimization means that dual output mode uses similar hardware resources compared to single
output mode.

PhasePort — Return current phase
false or O (default) | trueor 1

Set this property to 1 (true) to return the current NCO phase in the phase output argument. The
phase is the output of the quantized accumulator with offset and increment applied. If quantization is
disabled, this argument returns the output of the accumulator with offset and increment applied.

ResetAction — Enable reset accumulator input argument
false or O (default) | true or 1

When this property is 1 (true), the object accepts a ResetAccum input argument. When the
ResetAccum argument is 1 (true), the object resets the accumulator to its initial value.

Data Types

OverflowAction — Overflow mode for fixed-point operations
'"Wrap' (default)

This property is read-only.
Overflow mode for fixed-point operations.

RoundingMethod — Rounding mode for fixed-point operations
"Floor' (default)

This property is read-only.
Rounding mode for fixed-point operations.

AccumulatorDataType — Accumulator data type
'Binary point scaling' (default)

This property is read-only.

Accumulator data type description. The object defines the fixed-point data type using the
AccumulatorSigned, AccumulatorWL, and AccumulatorFL properties.
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AccumulatorSigned — Signed or unsigned accumulator data format
'Signed’ (default)

This property is read-only.
Signed or unsigned accumulator data format. All output is signed format.

AccumulatorWL — Accumulator word length
16 (default) | integer

Accumulator word length, in bits, specified as an integer. This value must include the sign bit.

When the PhaseQuantization property is 0, then AccumulatorWL determines the LUT size. For
HDL code generation, the LUT size must be between 2 and 2!7 entries. When you set the
LUTCompress property to 1 (true), AccumulatorWL must be an integer in the range [5,21]. When
you set the LUTCompress property to 0 (false), AccumulatorWL must be an integer in the range
[3,19]. For more information on how this parameter affects the LUT size, see the “Lookup Table
Compression” on page 2-77 section.

When you set the PhaseQuantization property to 1, there is no limit to the accumulator word
length property value.

AccumulatorFL — Accumulator fraction length
0 (default)

This property is read-only.

Accumulator fraction length, in bits. The accumulator operates on integers. If the phase increment is
fixed-point type with a fractional part, the object returns an error.

PhaseQuantization — Quantize accumulated phase
false or O (default) | true or 1

Whether to quantize accumulated phase, specified as 1 (true) or 0 (false). When this property is
enabled, the object quantizes the result of the phase accumulator to a fixed bit-width. The object uses
this quantized value to select a waveform value from the lookup table. Quantizing the output of the
phase accumulator enables you to reduce the lookup table size without lowering the frequency
resolution. Select the size of the lookup table by using the NumQuantizerAccumulatorBits
property.

When you disable this property, the object uses the full accumulator value as the address of the
lookup table.

NumQuantizerAccumulatorBits — Number of quantizer accumulator bits
12 (default) | integer

Number of quantizer accumulator bits, specified as an integer greater than 4 and less than the
AccumulatorWL property value. For HDL code generation, this parameter value must result in a LUT
size between 2 and 2'7 entries.

When you set the LUTCompress property to 1 (true), AccumulatorWL must be an integer in the
range [5,21]. When you set the LUTCompress property to 0 (false), AccumulatorWL must be an
integer in the range [3,19]. For more information on how this parameter affects the LUT size, see the
“Lookup Table Compression” on page 2-77 section.
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When you set the QuantizePhase property to true, there is no limit to the
NumQuantizerAccumulatorBits property value.

Dependencies
To enable this property, set the PhaseQuantization property to 1 (true).

OutputDataType — Output data type
‘Binary point scaling' (default) | ‘double' | ‘single’

Output data type. If you specify 'Binary point scaling', the object defines the fixed-point data
type using the OutputSigned, OutputWL, and OutputFL properties.

This parameter is ignored if any input is of floating-point type. In that case, the output data type is
double.

OutputSigned — Signed or unsigned output data format
'Signed' (default)

This property is read-only.
Signed or unsigned output data format. All output is signed format.

OutputWL — Output word length
16 (default) | integer

Output word length, in bits, specified as an integer. This value must include the sign bit.

OutputFL — Output fraction length
14 (default) | scalar integer

Output fraction length, in bits, specified as a scalar integer.
Usage

Syntax
[Y,ValidOut] hdlnco(Inc,ValidIn)

[Y,ValidOut] hdlnco (ValidIn)

[Y,ValidOut] hdlnco(Inc,0ffset,Dither,ValidIn)
[Y,Phase,ValidOut] = hdlnco( )

[ 1 = nhdlnco(___ ,ResetAccum,ValidIn)

Description

The object returns the waveform value, Y, as a sine value, a cosine value, a complex exponential
value, or a [Sine, Cosine] pair of values, depending on the Waveform property.

[Y,ValidOut] = hdlnco(Inc,ValidIn) returns a sinusoidal signal, Y, generated by the
HDLNCO System object, using the phase increment, Inc. When ValidInis true, Inc is added to
the accumulator. The Inc argument is optional. Alternatively, you can specify the phase increment as
a property.

[Y,ValidOut] = hdlnco (ValidIn) returns a waveform, Y, using waveform parameters from
properties rather than input arguments.
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To use this syntax, set the PhaseIncrementSource, PhaseOffsetSource, and DitherSource properties
to 'Property'. These properties are independent of each other. For example:

hdlnco = dsphdl.NCO('PhaselncrementSource', 'Property"',
'PhaseIncrement',phIncr,...
'PhaseOffset',phOffset, ...
"NumDitherBits',4)

[Y,ValidOut] = hdlnco(Inc,0ffset,Dither,ValidIn) returns a waveform, Y, with phase
increment, Inc, phase offset, 0f fset, and dither, Dither.

This syntax applies when you set the PhaselncrementSource, PhaseOffsetSource, and DitherSource
properties to 'Input port'. These properties are independent of each other. You can mix and
match the activation of these arguments. PhaseIncrementSource is 'Input port' by default. For
example:

hdlnco = dsphdl.NCO('Phase0OffsetSource', 'Input port',...
'DitherSource', 'Input port')
for k = 1:1/Ts
y(k) = hdlnco(phIncr,phOffset,ditherBits,true);
end

[Y,Phase,ValidOut] = hdlnco( ) returns a waveform, Y, and current phase, Phase. The
phase is the output of the quantized accumulator.

To use this syntax, set the PhasePort property to true. This syntax can include any of the arguments
from other syntaxes.

[ 1 = hdlnco( ,ResetAccum,ValidIn) resets the accumulator value, but does not reset
the output samples in the pipeline. If ValidIn is true, then the object continues to generate the
output waveform starting from the reset accumulator value.

To use this syntax, set the ResetAction property to 1 (true). This syntax can include any of the
arguments from other syntaxes.

Input Arguments

Inc — Phase increment
scalar integer

Phase increment, specified as a scalar integer. The object casts this value to match the accumulator
word length.

The software supports double and single data types for simulation, but not for HDL code
generation.

Dependencies

To enable this argument, set the PhaseIncrementSource property to ' Input port'.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fixdt([],N,0)

ValidIn — Control signal that enables NCO operation
scalar
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Control signal that enables NCO operation, specified as a Logical scalar. When ValidInis true,
the object increments the phase and captures any input values. When ValidIn is false, the object
holds the phase accumulator and ignores any input values.

When the SamplesPerFrame property value is greater than 1, this signal enables processing of
SamplesPerFrame samples.

Data Types: logical

0ffset — Phase offset
scalar integer

Phase offset, specified as a scalar integer.

double and single data types are supported for simulation but not for HDL code generation.
Dependencies

To enable this argument, set the PhaseOffsetSource property to 'Input port'.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fixdt([],N,0)

Dither — Dither
scalar integer | column vector of integers

Dither, specified as an integer or as a column vector of integers. The length of the vector must equal
the SamplesPerFrame property value.

The software supports double and single data types for simulation, but not for HDL code
generation.

Dependencies

To enable this argument, set the DitherSource property to ' Input port'.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uintl1l6 | uint32 | uint64 |
fixdt([],N,0)

ResetAccum — Resets the accumulator
scalar

Control signal that resets the accumulator, specified as a Logical scalar . When this signal is true,
the object resets the accumulator to its initial value. This signal does not reset the output samples in
the pipeline.

Dependencies

To enable this argument, set the ResetAction property to 1 (true).

Data Types: logical
Output Arguments

Y — Generated waveform
scalar | [Sine,Cosine] pair | vector
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Generated waveform, returned as a scalar or a vector of length SamplesPerFrame. This argument
can be a sin or cos value, an exp value representing cosine + j*sine, or a pair of arguments in
the form [Sine,Cosine].

If any input is of floating-point type, the object returns floating-point values for the waveform and
Phase arguments, otherwise the object returns values using the type defined by the
OutputDataType property.

The software supports double and single data types for simulation, but not for HDL code
generation.

Dependencies

By default, the output waveform is a sine wave. The format of the output waveform depends on the
Waveform property.

ValidOut — Indicates validity of output data
scalar

Control signal that indicates validity of output data, specified as a Logical scalar. When validOut
is true, the values of Y and Phase are valid. When validOut is false, the values of Y and Phase
are not valid.

When the SamplesPerFrame property value is greater than 1, this signal indicates the validity of all
elements in the output vectors.

Data Types: logical

Phase — Current phase of NCO
scalar | column vector

Current phase of the NCO, returned as a scalar or as a vector of length SamplesPerFrame. The
phase is the output of the quantized accumulator with offset and increment applied. If quantization is
disabled, this port returns the output of the accumulator with offset and increment applied.

The values are of type fixdt(1,N, 0), where N is the NumQuantizerAccumulatorBits property
value. If quantization is disabled, then N is the AccumulatorWL property value.

If any input argument is floating-point type, the object returns the Phase argument as a floating point
value. Floating-point types are supported for simulation but not for HDL code generation.

Dependencies

To enable this argument, set the PhasePort property to 1 (true).
Data Types: single | double | fixdt(1,N,0)
Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)
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Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Design a HDL-Compatible NCO Source
This example shows how to design an HDL-compatible NCO source.

Write a function that creates and calls the System object™, based on the waveform requirements. You
can generate HDL from this function.

function yOut = HDLNCO0510(validIn)

%HDLNC0510

Generates one sample of NCO waveform using the dsphdl.NCO System object(TM)
validIn is a logical scalar value

phase increment, phase offset, and dither are fixed.

You can generate HDL code from this function.

d° o° o° o°

persistent nco510;

if isempty(nco510)

Since calculation of the object parameters results in constant values, this
code is not included in the generated HDL. The generated HDL code for

the NCO object is initialized with the constant property values.

o® o° o°

FO = 510; % Target output frequency in Hz

dphi = pi/2; % Target phase offset

df = 0.05; % Frequency resolution in Hz

minSFDR = 96; % Spurious free dynamic range(SFDR) in dB
Ts = 1/4000; % Sample period in seconds

% Calculate the number of accumulator bits required for the frequency
% resolution and the number of quantized accumulator bits to satisfy the SFDR
% requirement.
Nacc = ceil(log2(1/(df*Ts)));
% Actual frequency resolution achieved = 1/(Ts*2”Nacc)
Ngacc = ceil((minSFDR-12)/6);
% Calculate the phase increment and offset to achieve the target frequency
% and offset.
phIncr = round(FO*Ts*2"Nacc);
phOffset = 2”Nacc*dphi/(2*pi);
nco510 = dsphdl.NCO( 'PhaseIncrementSource', 'Property’,
'Phaselncrement',phlncr,...
'PhaseOffset',phOffset, ...
"NumDitherBits',4,
"NumQuantizerAccumulatorBits', Ngacc,...
"AccumulatorWL',Nacc);
end

yOut = nco510(validIn);
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Processing

end

Call the object to generate data points in a sine wave. The input to the object is a valid control signal.

Ts = 1/4000;
y = zeros(1,1/Ts);
for k = 1:1/Ts
y(k) = HDLNCO510(true);
end

Plot the mean-square spectrum of the 510 Hz sine wave generated by the NCO.

sa = spectrumAnalyzer('SampleRate',1/Ts);

sa.SpectrumType = 'Power density';
sa.PlotAsTwoSidedSpectrum = false;
sa(y')

ESTIMATIOM MEASUREMENTS SPECTRUM SPECTRAL MASK  CHANNEL MEASUREMENTS

VBW = 345388 mHz RBW = 1.95313 Hz Sample Rate = 4.00000 kHz Frames =1 T = 0.999750

Algorithms
The frequency resolution of the sine wave depends on the size of the accumulator. Given a sample

time, T,, and the desired output frequency resolution Af, calculate the necessary accumulator word
length, N.

N = ceil(logz(ﬁ))
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For a desired output frequency F,, calculate the phase increment.
phaseincrement = round(FyT SZN )

Quantizing the output of the phase accumulator enables you to reduce the lookup table size without
lowering the frequency resolution. Calculate the quantized word length to achieve a desired spurious
free dynamic range (SFDR).

Q= ceil(SFD}é - 12)

Phase offset and dither are optionally added at the accumulator stage. For a desired phase offset (in
radians) of the output waveform, calculate the phase offset value that the object adds in the
accumulator.

oN. desiredphaseoffset

phaseoffset = o

The NCO implementation depends on whether you enable the LUTCompress property.
Without lookup table compression, the object uses the same quarter-sine lookup table as the

dsp.NCO object. The size of the LUT is 222x W bits, where Q is NumQuantizerAccumulatorBits
and Wis QutputWL.

[

292y W
M rsign |V S ' Q singorasey|| ¥
e —“a = ona [~ = ?ﬁmﬂ"lizehf—* —<» sinicos

[ 1
Accumulate Lookup Table

N = Phase increment word length

N = Lecum®L

& = HumQuantizgericcoumulatorBics

If Pha=aluantizaticr is mot enabled, Q=R
W = DutputiL

offset dither

The object casts the phase increment value to match the accumulator word length.

If you do not enable PhaseQuantization, then Q=N, where N is AccumulatorWL. Consider the
impact on simulator memory and hardware resources when you select these parameters.

When you set the Waveform property to 'Complex exponential' or 'Sine and cosine', the
object implements a 1/8 sine wave lookup table for each of the sine and cosine parts of the waveform,
and uses control logic to select and invert the values to generate both sine and cosine waveforms.
This optimization means that dual output mode uses similar hardware resources compared to single
output mode.

For an example of how to generate a sine wave using this System object, see “Design a HDL-
Compatible NCO Source” on page 2-74.
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Lookup Table Compression
When you select lookup table (LUT) compression, the object applies the Sunderland compression

method. Sunderland techniques use trigonometric identities to divide each phase of the quarter sine
wave into three components and express it as:

sin(A + B + C) = sin(A + B)cos(C) + cos(A)cos(B)sin(C) — sin(A)sin(B)sin(C)
If the quarter-sine phase has Q-2 bits, then the phase components A and B have a word length of
LA=LB=ceil((Q-2)/3). Phase component C contains the remaining phase bits. If the phase has 12

bits, then the quarter sine phase has 10 bits, and the components are defined as:

* A, the four most significant bits
i
(0=sA=s 7)
* B, the next four bits

(OsBs%xZ_‘L)

* C, the remaining two least significant bits
wsCs%XZ&

Given the relative sizes of A, B, and C, the equation can be approximated by:
sin(A + B + C) = sin(A + B) + cosAsinC

The object implements this equation with one LUT for sin(A + B) and one LUT for cos(A)sin(C). The
second term is a fine correction factor that you can truncate to fewer bits without losing precision.
Therefore, the second LUT returns a four-bit result.

o 2LA *LE - W] | 2147 hy-4 W
M reige | N S Q@ | sin(a+B) || cosasinC "
inc —<»| Extend S e H ‘Quan |ze:'7f—r <+ sinicos

| A
Accumulate Compressed Lookup Table

M = Phase increment word length

N = RcocumFL

@ = HumJuantizerfcocumulatorBics

If Pha=eJuantizaticn is not enabled, Q=/
A, B, G = Phase component angles.
LA=1lB=c=il ((g-21/3) bits.

LG = rem{Q-2,c=il [ (Q-2) /3) ) bits.

W= DusputWL

offset dither

With the default accumulator size of 16 bits, and the default quantized phase width of 12 bits, the
LUTs use 28x16 plus 26x4 bits (4.5 kb). For comparison, a quarter-sine lookup table without
compression uses 219x16 bits (16 kb). The compression approximation is accurate within one LSB,
resulting in an SNR of at least 60 dB on the output. See [1].
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When you set the Waveform property to 'Complex exponential' or 'Sine and cosine'’, the
object implements a compressed lookup table for each of the sine and cosine parts of the waveform.
The hardware resource use is still smaller than dual output mode with an uncompressed table.

Version History
Introduced in R2013a

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this System object was named dsp.HDLNCO and was part of the DSP System Toolbox
product.

R2022a: Resource optimization for dual output mode

When you set the Waveform property to 'Complex exponential' or 'Sine and cosine', this
System object implements a 1/8 sine wave lookup table for each of the sine and cosine parts of the
waveform, and uses control logic to select and invert the values to generate both sine and cosine
waveforms. This optimization means that dual output mode uses hardware resources similar to single
output mode. In previous releases, the object implemented one lookup table for each output
waveform.

R2020a: Valid input port required
Behavior changed in R2020a

In previous releases, the input validIn argument of the dsp.HDLNCO System object was optional. It
is now required. If you are using no other input ports, the object uses the validIn argument as an
enable signal.

R2020a: Phase quantization for floating-point input
Behavior changed in R2020a

The output waveform returned from floating-point input values has changed. The output waveform
now matches the waveform returned from the same input values specified in fixed-point types.

Before R2020a, when using floating-point input types, the dsp.HDLNCO System object did not
quantize the phase internally. The object expected floating-point phase increment and phase offset
inputs specified in radians. Now, the object quantizes the phase internally, and you must specify the
input phase increment and offset in terms of the quantized size, for both floating-point and fixed-point
input types.

For example, before R2020a, for a floating-point HDL NCO to generate output samples with a desired
output frequency of F; and sample frequency of F,, you had to specify the phase increment as
21(Fy/F;,) and phase offset as /2.

Starting in R2020a, you must specify the phase increment and phase offset in terms of the quantized
size, N. These input values are the same as the input values you use with fixed-point types. Specify
the phase increment as (Fy*2N)/F,, and the phase offset as (11/2)*2N/2m, or 2V/4.

R2020a: High-throughput interface
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You can generate frame-based waveforms from the System object. The object returns a vector where
each element represents a sample in time. Set the SamplesPerFrame property to the desired output
vector size.

References

[1] Cordesses, L., "Direct Digital Synthesis: A Tool for Periodic Wave Generation (Part 1)." IEEE
Signal Processing Magazine. Volume 21, Issue 4, July 2004, pp. 50-54.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The software supports double and single data types for simulation, but not for HDL code
generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also

Objects
dsp.NCO

Blocks
NCO
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dsphdl.ChannelSynthesizer

Package: dsphdl

Combine narrowband signals into multichannel signal

Description

The dsphdl.ChannelSynthesizer System object combines narrowband signals into a multi-
channel signal using the polyphase filter bank technique. The filter bank uses a prototype lowpass
filter and is implemented using a polyphase structure. You can specify the filter coefficients directly
or through design parameters. The System object provides an architecture suitable for HDL code
generation and hardware deployment.

The System object supports real and complex fixed-point inputs.
To combine multiple narrowband signals into a broadband signal:

1 Create the dsphdl.ChannelSynthesizer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

ChannelSynthesizer = dsphdl.ChannelSynthesizer
ChannelSynthesizer = dsphdl.ChannelSynthesizer(Name,Value)
Description

ChannelSynthesizer = dsphdl.ChannelSynthesizer creates a polyphase FFT synthesis filter
bank System object, which combines multiple narrowband input signals into a broadband output
signal.

ChannelSynthesizer = dsphdl.ChannelSynthesizer(Name,Value) creates a polyphase FFT
synthesis filter bank object with each specified property set to the specified value. You can specify
additional name-value arguments in any order as (Namel,Valuel, ...,NameN, ValueN).

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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Main

FilterCoefficients — Polyphase filter coefficients
[-0.0329 0.1218 0.3183 0.4829 0.5469 0.4829 0.5469 0.4829 0.3183 0.1218
-0.0329] (default) | real- or complex-valued vector

Polyphase filter coefficients, specified as a real- or complex-valued vector. If the number of
coefficients is not a multiple of the number of frequency bands or the IFFT length, the object pads
this vector with zeros. The default filter specification is a raised-cosine FIR filter,
rcosdesign(0.25,2,4, 'sqrt'). You can specify a vector of coefficients or a call to a filter design
function that returns the coefficient values. By default, the object casts the coefficients to the same
data type as the input.

FilterStructure — HDL filter architecture
‘Direct form transposed' (default) | 'Direct form systolic'

HDL filter architecture, specified as one of these structures:

* Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications. For architecture details, see “Fully Parallel Transposed
Architecture”.

* Direct form systolic — This architecture provides a fully parallel filter implementation that
makes efficient use of Intel and Xilinx DSP blocks. For architecture details, see “Fully Parallel
Systolic Architecture”.

ComplexMultiplication — HDL implementation of complex multipliers
'Use 4 multipliers and 2 adders' (default) | 'Use 3 multipliers and 5 adders'

HDL implementation of complex multipliers, specified as either 'Use 4 multipliers and 2
adders' or 'Use 3 multipliers and 5 adders'. The performance of the HDL implementation
depends on your synthesis tool and target device.

Normalize — IFFT scaling
true or 1 (default) | false or 0

IFFT output scaling, specified as either:

* true — The IFFT implements an overall 1/N scale factor by scaling the result of each pipeline
stage by 2, , where N is the IFFT length. This adjustment keeps the output of the IFFT in the same
amplitude range as its input.

+ false — The IFFT avoids overflow by increasing the word length by one bit at each stage.
Data Types

RoundingMethod — Rounding mode used for internal fixed-point calculations
"Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method for type-casting the output, specified as 'Floor', 'Ceiling', 'Convergent’,
‘Nearest', 'Round’, or 'Zero'. The object uses this property when casting the output to the data
type specified by the OutputDataType property. When the input data type is floating point, the
object ignores this property. For more details, see “Rounding Modes”.

OverflowAction — Overflow handling for type-casting the output
'Wrap' (default) | 'Saturate'
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Overflow handling for type-casting the output, specified as 'Wrap' or 'Saturate'. The object uses
this property when casting the output to the data type specified by the QutputDataType property.
When the input data type is floating point, the object ignores this property. For more details, see
“Overflow Handling”.

The IFFT algorithm avoids overflow by either scaling the output of each stage (Normalize enabled), or
by increasing the word length by 1 bit at each stage (Normalize disabled).

CoefficientsDataType — Data type of filter coefficients
‘Same word length as input' (default) | numerictype object

Data type of filter coefficients, specified as 'Same word length as input' or a numerictype
object. To specify a numerictype object, call numerictype(s,w, ), where:

* sis 1 for signed and 0 for unsigned.

* wis the word length in bits.

* fis the number of fractional bits.

The object casts the filter coefficients to the specified data type. The quantization rounds to the

nearest representable value and saturates on overflow. When the input data type is floating point, the
object ignores this property.

OutputDataType — Output data type
"Full precision' (default) | 'Same as input' | numerictype object

Output data type, specified as 'Same word length as input', 'Full precision',ora
numerictype object. To specify a numerictype object, call numerictype(s,w, f), where:

* sis 1 for signed and 0 for unsigned.

* wis the word length in bits.

* fis the number of fractional bits.

The object casts the output of the filter to the specified data type. The quantization uses the settings

of the RoundingMethod and OverflowAction properties. When the input data type is floating
point, the object ignores this property.

When you set this property to 'Full precision', the System object selects a best-precision binary
point by considering the values of your filter coefficients and the range of your input data type. When
you set this property to 'Same as input', the System object casts the output of the polyphase filter
to the input data type using the rounding and overflow settings you specify.

Control Arguments

ResetInputPort — Option to enable reset input argument
false (default) | true

Option to enable reset input argument, specified as true or false. When you set this property to
true, the object expects a value for the reset input argument. The reset signal implements a local
synchronous reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.
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Usage

Syntax

[dataOut,validOut]
[dataOut,validOut]

channelsynthesizer(dataln,validIn)
channelsynthesizer(dataln,validIn, reset)

Description

[dataOut,validOut] channelsynthesizer(dataln,validIn) combines the narrowband
row input dataln vector signals and returns a broadband signal, dataOut, when validInis 1
(true). The validIn and validOut arguments are logical scalars that indicate the validity of the
input and output signals, respectively.

[dataOut,validOut] = channelsynthesizer(datalIn,validIn, reset) combines the
narrowband row input dataIn vector signals returns a broadband signal, dataOut, when validIn
is 1 (true) and reset is 0 (false). When reset is 1 (true), the object stops the current calculation and
clears all internal state.

To use this syntax, set the ResetInputPort property to true. For example:
synthesizer = dsphdl.ChannelSynthesizer(..., 'ResetInputPort', true);
i&étaOut,validOut] = synthesizer(dataln,validIn, reset)

Input Arguments

dataIn — Input data
real-valued row vector | complex-valued row vector

Input data, specified as a real-valued or complex-valued row vector.
The vector length must be a power of 2 and in the range [4, 64].

The software supports double and single data types for simulation, but not for HDL code
generation.
Data Types: single | double | int8 | int1l6 | int32 | uint8 | uint1l6 | uint32 | fi

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validInis 1 (true), the object captures
the values from the dataIn argument. When validIn is O (false), the object ignores the values
from the dataln argument.

Data Types: logical

reset — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the object captures data for processing.
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For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set ResetInputPort to true.

Data Types: logical
Output Arguments

dataOut — Synthesized output data
complex-valued column vector

Synthesized output data, returned as a complex-valued column vector.

When the input data type is a floating-point type, the output data inherits the data type of the input
data. When the input data type is an integer type or a fixed-point type, the OutputDataType
property controls the data type of output data.

The output size is same as the input size and it is equal to the number of frequency bands or IFFT
length.

The output order is bit natural. The output data type is a result of the bit growth in the IFFT
necessary to avoid overflow and the data type set in the OutputDataType property.
Data Types: single | double | fi

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validQut is 0 (false), values from the
dataOut argument are not valid.

Data Types: Llogical

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsphdl.ChannelSynthesizer

getLatency Latency of channel synthesizer calculation

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object
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Examples

Create Synthesizer for HDL Generation
Create a function that contains a channel synthesizer object and supports HDL code generation.

Create an input sine wave signal with the specified number of frequency bands, frequency vector, and
loop count.

numOfFrequencyBands = 8;

frequency = [-250,-180,-120,50,120,175,230,300];

loopCount = 100;

sinewave = dsp.SineWave('ComplexOutput',true, 'Frequency',...
frequency, 'SamplesPerFrame', loopCount);

sa = spectrumAnalyzer('ShowLegend',true,...
'SampleRate',sinewave.SampleRate*numOfFrequencyBands);

Call the function that contains the dsphdl.ChannelSynthesizer object. You can generate HDL
code using this function.

function [yOut,validOut] = HDLSynthesizer8(yIn,validIn)
%HDLSynthesizer8

Combines narrow band signals to broadband signal using the
|dsphdl.ChannelSynthesizer| System object(TM).

o o°

|yIn| is a fixed-point row vector and |validIn| is a logical scalar value.
You can generate HDL code from this function.

o o°

persistent synthesizer8;
coder.extrinsic('tf');
coder.extrinsic('dsp.Channelizer');

if isempty(synthesizer8)
% Use filter coefficients from non-HDL channelizer. You can also
% provide your own filter coefficients.
FilterCoefficients = tf(dsp.Channelizer('NumFrequencyBands',...
8));
synthesizer8 = dsphdl.ChannelSynthesizer('FilterCoefficients', ...

FilterCoefficients);
end
[yOut,validOut] = synthesizer8(yIn,validIn);
end

Synthesize the input data by calling the function.

y = zeros(numOfFrequencyBands, LoopCount);
validOut = false(loopCount,l);

for i = 1:20
x = fi(sinewave(),1,16);
for j = 1:loopCount
[y(:,3),validOut(j)]

o°

Each column is a sine wave signal

HDLSynthesizer8(x(j,:),true);
end
yValid = y(:,validOut == true);
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sa(yvValid(:));
end

AMALYZER ESTIMATIOMN MEASUREMEMNTS SPECTRUM SPECTRAL MASK  CHANNEL MEASUREMENTS

——— Channel 1

Processing
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Explore Latency of Channel Synthesizer Object

The latency of the dsphdl.ChannelSynthesizer object varies with the IFFT length and filter
structure.

Create a dsphdl.ChannelSynthesizer object with a direct form transposed filter structure and 16
frequency bands, and then calculate the latency.

synthesizerDT = dsphdl.ChannelSynthesizer('FilterStructure', 'Direct form transposed');
latencyDT = getlLatency(synthesizerDT, 16)

latencyDT = 20

Calculate the latency information for dsphdl.ChannelSynthesizer object with a direct form
systolic filter structure and and 8 frequency bands.

synthesizerDS = dsphdl.ChannelSynthesizer('FilterStructure', 'Direct form systolic');
latencyDS = getLatency(synthesizerDS,8)

latencyDS = 21

Enable scaling at each stage of the IFFT. The latency does not change.
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synthesizerDT.Normalize = true;
latencyDTn = getlLatency(synthesizerDT, 16)

latencyDTn = 20

Algorithms

The polyphase filter algorithm requires a subfilter for each FFT channel. For more information on the
polyphase filter architecture, see the Channelizer (DSP System Toolbox) block reference page.

— Y(0)
X(0) =—
-_— .
N=#0f . * N=#of
channels |, . " channels

—_— A
X(N-1) e — Y(N-1)

If the FFT length is N, the object implements N subfilters in the hardware. Each subfilter is an FIR
filter direct form transposed or direct form systolic with Numc,.4/N taps. The object casts the output
of the subfilters to the specified OutputDataType property by using the rounding and overflow
settings you select and then pipelines filter tap in the subfilter to target the DSP sections of an FPGA.

Latency

The latency varies with the input size and the filter structure. Use the getLatency function to find
the latency of a particular configuration. Latency is the number of cycles between the first valid input
and the first valid output, assuming that the input is continuous. The filter coefficients and complex
multiplication do not affect the latency.

This figure shows the output of the object for a vector input length 8 when you set the Filter
structure property to 'Direct form transposed' and with other properties set to default
values. The latency of the object is 19 clock cycles.
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This figure shows the output of the object for a vector input of length 8 when you set the Filter
structure property to 'Direct form systolic' and with other properties set with default
values. The latency of the object is 31 clock cycles.

0.8752+0i 1.3_ )

Performance

These resource and performance data are the place-and-route results from the generated HDL
targeted to the Xilinx Zyng- 7000 ZC706 evaluation board. The two examples in the tables use this
common configuration:

* 1-by-8 vector

* 16-bit complex input data

» Filter structure — Direct form transposed

+ Filter length — 96 coefficients

* Coefficient data type — Same word length as input

* Output data type — Same as input

* Complex multiplication (default) — Use 4 multipliers and 2 adders

* Output scaling — Enabled

The performance of the synthesized HDL code varies with your target and synthesis options.

When you set the Filter structure property to 'Direct form transposed’, the design
achieves a clock frequency of 382 MHz. The design uses these resources.

Resource Number Used
LUT 1953

FFS 3833

Xilinx LogiCORE DSP48 208
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When you set the Filter structure propertyto 'Direct form systolic', the design achieves
a clock frequency of 381 MHz. The design uses these resources.
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Resource Number Used
LUT 2026

FFS 3519

Xilinx LogiCORE DSP48 208

Version History
Introduced in R2021b

References
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The software supports double and single data types for simulation, but not for HDL code
generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also

Blocks
Channel Synthesizer | Channelizer

Objects
dsphdl.Channelizer
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Package: dsphdl

Compute fast Fourier transform (FFT)

Description

The dsphdl. FFT System object provides two architectures to optimize either throughput or area.
Use the streaming Radix 22 architecture for high-throughput applications. This architecture
supports scalar or vector input data. You can achieve gigasamples-per-second (GSPS) throughput
using vector input. Use the burst Radix 2 architecture for a minimum resource implementation,
especially with large FFT sizes. Your system must be able to tolerate bursty data and higher latency.
This architecture supports only scalar input data. The object accepts real or complex data, provides
hardware-friendly control signals, and has optional output frame control signals.

To calculate the fast Fourier transform:

1 Create the dsphdl.FFT object and set its properties.
2 (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

FFT_N
FFT_N

dsphdl.FFT
dsphdl.FFT(Name,Value)

Description

FFT N = dsphdl.FFT returns an HDL FFT System object, FFT N, that performs a fast Fourier
transform.

FFT_N = dsphdl.FFT(Name,Value) sets properties using one or more name-value pairs. Enclose
each property name in single quotes.

Example: Tft128 = dsphdl.FFT('FFTLength',6128)

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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Architecture — Hardware implementation
'Streaming Radix 272' (default) | 'Burst Radix 2'

Hardware implementation, specified as either:

* 'Streaming Radix 272' — Low-latency architecture. Supports gigasamples-per-second (GSPS)
throughput when you use vector input.

* 'Burst Radix 2'— Minimum resource architecture. Vector input is not supported when you
select this architecture. When you use this architecture, your input data must comply with the
ready backpressure signal.

ComplexMultiplication — HDL implementation of complex multipliers
'Use 4 multipliers and 2 adders' (default) | 'Use 3 multipliers and 5 adders'

HDL implementation of complex multipliers, specified as either 'Use 4 multipliers and 2
adders' or 'Use 3 multipliers and 5 adders'. Depending on your synthesis tool and target
device, one option may be faster or smaller.

BitReversedOutput — Order of the output data
true (default) | false

Order of the output data, specified as either:

* true — The output channel elements are bit reversed relative to the input order.

+ false — The output channel elements are in linear order.

The FFT algorithm calculates output in the reverse order to the input. When you request output in
the same order as the input, the algorithm performs an extra reversal operation. For more
information on ordering of the output, see “Linear and Bit-Reversed Output Order”.

BitReversedInput — Expected order of the input data
false (default) | true

Expected order of the input data, specified as either:

* true — The input channel elements are in bit-reversed order.
+ false — The input channel elements are in linear order.
The FFT algorithm calculates output in the reverse order to the input. When you request output in

the same order as the input, the algorithm performs an extra reversal operation. For more
information on ordering of the output, see “Linear and Bit-Reversed Output Order”.

Normalize — Output scaling
false (default) | true

Output scaling, specified as either:

* true — The object implements an overall 1/N scale factor by dividing the output of each butterfly
multiplication by 2. This adjustment keeps the output of the FFT in the same amplitude range as
its input.

+ false — The object avoids overflow by increasing the word length by one bit after each butterfly
multiplication. The bit growth is the same for both architectures.

2-91



2 System Objects

2-92

FFTLength — Number of data points used for one FFT calculation
1024 (default) | integer power of 2 between 22 and 216

Number of data points used for one FFT calculation, specified as an integer power of 2 between 22
and 26, The object accepts FFT lengths outside this range, but they are not supported for HDL code
generation.

ResetInputPort — Enable reset argument
false (default) | true

Enable reset input argument to the object. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true), the
object captures data for processing.

StartOutputPort — Enable start output argument
false (default) | true

Enable startOut output argument of the object. When enabled, the object returns an additional
output signal that is true on the first cycle of each valid output frame.

EndOutputPort — Enable end output argument
false (default) | true

Enable endOut output argument of the object. When enabled, the object returns an additional output
signal that is true on the first cycle of each valid output frame.

RoundingMethod — Rounding mode used for fixed-point operations
"Floor"' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round’' | 'Zero'

Rounding mode used for fixed-point operations. When the input is any integer or fixed-point data
type, the FFT algorithm uses fixed-point arithmetic for internal calculations. This option does not
apply when the input is single or double type. Rounding applies to twiddle factor multiplication and
scaling operations.

Usage

Syntax

[Y,validOut] = FFT _N(X,validIn)

[Y,validOut, ready] = FFT _N(X,validIn)
[Y,startOut,endOut,validOut] = FFT N(X,validIn)
[Y,validOut] = FFT _N(X,validIn, resetIn)
[Y,startOut,endOut,validOut] = FFT N(X,validIn, resetIn)

Description

[Y,validOut] = FFT _N(X,validIn) returns the FFT, Y, of the input, X, when validInis true.
validIn and validOut are logical scalars that indicate the validity of the input and output signals,
respectively.

[Y,validOut, ready] = FFT _N(X,validIn) returns the fast Fourier transform (FFT) when using
the burst Radix 2 architecture. The ready signal indicates when the object has memory available for
new input samples. You must apply input data and valid signals only when ready is 1 (true). The
object ignores any input data and valid signals when ready is 0 (false).
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To use this syntax, set the Architecture property to 'Burst Radix 2'. For example:

FFT N = dsphdl.FFT(__ ,'Architecture', 'Burst Radix 2');
[y,validOut, ready] = FFT_N(x,validIn)

[Y,startOut,endOut,validOut] = FFT N(X,validIn) also returns frame control signals
startOut and endOut. startOut is true on the first sample of a frame of output data. endOut is
true for the last sample of a frame of output data.

To use this syntax, set the StartOutputPort and EndOutputPort properties to true. For example:

FFT_ N = dsphdl.FFT(__ ,'StartOutputPort',true, 'EndOutputPort',true);
[y,startOut,endOut,validOut] = FFT_N(x,validIn)

[Y,validOut] = FFT _N(X,validIn, resetIn) returns the FFT when validIn is true and
resetInis false. When resetIn is true, the object stops the current calculation and clears all
internal state.

To use this syntax set the ResetInputPort property to true. For example:

FFT N = dsphdl.FFT(__ , 'ResetInputPort', true);
[y,validOut] = FFT _N(x,validIn, resetln)

[Y,startOut,endOut,validOut] = FFT N(X,validIn, resetIn) returns the FFT, Y, using all
optional control signals. You can use any combination of the optional port syntaxes.

Input Arguments

X — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values, in fixed-point or integer
format. Vector input is supported with 'Streaming Radix 272" architecture only. The vector size
must be a power of 2 between 1 and 64, and not greater than the FFT length.

The software supports double and single data types for simulation, but not for HDL code
generation.

Data Types: fi | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 | single | double

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataln argument.

Data Types: logical

resetIn — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.
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For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set ResetInputPort to true.

Data Types: logical
Output Arguments

Y — Output data
scalar or column vector of real or complex values

Output data, returned as a scalar or column vector of real or complex values. The output format
matches the format of the input data.

ready — Indicates object is ready for new input data
logical scalar

Control signal that indicates that the object is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the object ignores any input data in the next time step. This output is returned
when you select 'Burst Radix 2' architecture.

Data Types: logical

startOut — First sample of output frame
logical scalar

First sample of output frame, returned as a logical scalar. To enable this argument, set the
StartOutputPort property to true.

Data Types: logical

endOut — Last sample of output frame
logical scalar

Last sample of output frame, returned as a logical scalar. To enable this argument, set the
EndOutputPort property to true.

Data Types: Logical

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.

Data Types: logical
Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:
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release(obj)

Specific to dsphdl.FFT
getLatency Latency of FFT calculation

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Create FFT for HDL Generation

Create the specifications and input signal.

N = 128;

Fs = 40;

t = (0:N-1)'/Fs;

X = sin(2*pi*15*t) + 0.75*cos(2*pi*10*t);
y = X + .25*randn(size(x));

y fixed = sfi(y,32,24);

Write a function that creates and calls the System object™. You can generate HDL from this function.

function [yOut,validOut] = HDLFFT128(yIn,validIn)

%HDLFFT128

Processes one sample of FFT data using the dsphdl.FFT System object(TM)
yIn is a fixed-point scalar or column vector.

validIn is a logical scalar value.

You can generate HDL code from this function.

o° o° o o°

persistent fftl128;
if isempty(fft128)
fft128 = dsphdl.FFT('FFTLength',128);
end
[yOut,validOut] = fftl128(yIn,validIn);
end

Compute the FFT by calling the function for each data sample.

Yf = zeros(1,3*N);
validOut = false(1,3*N);
for loop = 1:1:3*N

if (mod(loop, N) == 0)
i=N;
else
i = mod(loop, N);
end

[Yf(loop),validOut(loop)] = HDLFFT128(complex(y fixed(i)), (loop <= N));
end
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Discard invalid data samples. Then plot the frequency channel results from the FFT.

Yf Yf(validOut == 1);

Yr bitrevorder(Yf);

plot(Fs/2*linspace(0,1,N/2), 2*abs(Yr(1:N/2)/N))
title('Single-Sided Amplitude Spectrum of Noisy Signal y(t)')
xlabel('Frequency (Hz)"')

ylabel('Output of FFT (f)"')

Single-Sided Amplitude Spectrum of Noisy Signal y(t)
'1_2 T T T T T T T T T

0.8 7

0.6 || .

Output of FFT (f)

ANV VANAA N\ AN N

0 2 4 6 8 10 12 14 16 18 20
Frequency (Hz)

Create Vector-Input FFT for HDL Generation

Create specifications and input signal. This example uses a 128-point FFT and computes the
transform over 16 samples at a time.

N = 128;

V = 16;

Fs = 40;

t = (0:N-1)'/Fs;

X = sin(2*pi*15*t) + 0.75*cos(2*pi*10*t);
y = X + .25*%randn(size(x));

y fixed = sfi(y,32,24);

y vect = reshape(y fixed,V,N/V);

Write a function that creates and calls the System object™. The function does not need to know the
vector size. The object saves the size of the input signal the first time you call it.
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function [yOut,validOut] = HDLFFT128V16(yIn,validIn)
%HDLFFT128V16

Processes 16-sample vectors of FFT data

yIn is a fixed-point column vector.

validIn is a logical scalar value.

You can generate HDL code from this function.

d° o° o° o°

persistent fftl128v16;
if isempty(fftl1l28v16)
fft128v16 = dsphdl.FFT('FFTLength',128);
end
[yOut,validOut] = fftl128v16(yIn,validIn);
end

Compute the FFT by passing 16-element vectors to the object. Use the getLatency function to find
out when the first output data sample will be ready. Then, add the frame length to determine how
many times to call the object. Because the object variable is inside the function, use a second object
to call getLatency. Use the loop counter to flip validIn to false after N input samples.

tempfft = dsphdl.FFT;
loopCount = getLatency(tempfft,N,V)+N/V;
Yf = zeros(V,loopCount);

validOut = false(V, loopCount);
for loop = 1:1:loopCount
if ( mod(loop,N/V) == )
i=N/V;
else
i = mod(loop,N/V);
end

[Yf(:,loop),validOut(loop)] = HDLFFT128V16(complex(y vect(:,1i)), (Loop<=N/V));
end

Discard invalid output samples.

C = Yf(:,validOut==1);
Yf flat = C(:);

Plot the frequency channel data from the FFT. The FFT output is in bit-reversed order. Reorder it
before plotting.

Yr = bitrevorder(Yf flat);
plot(Fs/2*linspace(0,1,N/2),2*abs(Yr(1:N/2)/N))
title('Single-Sided Amplitude Spectrum of Noisy Signal y(t)')
xlabel('Frequency (Hz)")

ylabel('Output of FFT (f)')
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Explore Latency of HDL FFT Object

The latency of the object varies with the FFT length and the vector size. Use the getLatency
function to find the latency of a particular configuration. The latency is the number of cycles between
the first valid input and the first valid output, assuming that the input is contiguous.

Create a new dsphdl.FFT object and request the latency.

hdlfft = dsphdl.FFT('FFTLength',512);
L512 = getlLatency(hdlfft)

L512 = 599

Request hypothetical latency information about a similar object with a different FFT length. The
properties of the original object do not change.

L256 = getLatency(hdlfft,256)

L256 = 329

N = hdlfft.FFTLength

N = 512

Request hypothetical latency information of a similar object that accepts eight-sample vector input.

L256v8 = getlLatency(hdlfft,256,8)
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L256v8 = 93

Enable scaling at each stage of the FFT. The latency does not change.

hdlfft.Normalize = true;
L512n = getLatency(hdlfft)

L512n = 599

Request the same output order as the input order. The latency increases because the object must
collect the output before reordering.

hdlfft.BitReversedQutput = false;
L512r = getLatency(hdlfft)

L512r = 1078

Algorithms
Streaming Radix 272

The streaming Radix 2”2 architecture implements a low-latency architecture. It saves resources
compared to a streaming Radix 2 implementation by factoring and grouping the FFT equation. The
architecture has log,(N) stages. Each stage contains two single-path delay feedback (SDF) butterflies
with memory controllers. When you use vector input, each stage operates on fewer input samples, so
some stages reduce to a simple butterfly, without SDF.
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The first SDF stage is a regular butterfly. The second stage multiplies the outputs of the first stage by
-j. To avoid a hardware multiplier, the block swaps the real and imaginary parts of the inputs, and
again swaps the imaginary parts of the resulting outputs. Each stage rounds the result of the twiddle
factor multiplication to the input word length. The twiddle factors have two integer bits, and the rest
of the bits are used for fractional bits. The twiddle factors have the same bit width as the input data,
WL. The twiddle factors have two integer bits, and WL-2 fractional bits.

If you enable scaling, the algorithm divides the result of each butterfly stage by 2. Scaling at each
stage avoids overflow, keeps the word length the same as the input, and results in an overall scale
factor of 1/N. If scaling is disabled, the algorithm avoids overflow by increasing the word length by 1
bit at each stage. The diagram shows the butterflies and internal word lengths of each stage, not

including the memory.
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Burst Radix 2

The burst Radix 2 architecture implements the FFT by using a single complex butterfly multiplier.
The algorithm cannot start until it has stored the entire input frame, and it cannot accept the next
frame until computations are complete. The output ready port indicates when the algorithm is ready
for new data. The diagram shows the burst architecture, with pipeline registers.

Twiddle
‘ ddr’
Mem

D = pipeline register

Controller

Ready

DataOut L

IR -

Scaling
and
Rounding

Switch Switch

Memory Bank
2

When you use this architecture, your input data must comply with the ready backpressure signal.
Control Signals

The algorithm processes input data only when the input valid port is 1. Output data is valid only
when the output valid port is 1.

When the optional input reset port is 1, the algorithm stops the current calculation and clears all

internal states. The algorithm begins new calculations when reset port is 0 and the input valid port
starts a new frame.
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Timing Diagram

This diagram shows the input and output valid port values for contiguous scalar input data,
streaming Radix 272 architecture, an FFT length of 1024, and a vector size of 16.

The diagram also shows the optional start and end port values that indicate frame boundaries. If you
enable the start port, the start port value pulses for one cycle with the first valid output of the frame.
If you enable the end port, the start port value pulses for one cycle with the last valid output of the
frame.

If you apply continuous input frames, the output will also be continuous after the initial latency.

The input valid port can be noncontiguous. Data accompanied by an input valid port is processed as
it arrives, and the resulting data is stored until a frame is filled. Then the algorithm returns
contiguous output samples in a frame of N (FFT length) cycles. This diagram shows noncontiguous
input and contiguous output for an FFT length of 512 and a vector size of 16.

When you use the burst architecture, you cannot provide the next frame of input data until memory
space is available. The ready signal indicates when the algorithm can accept new input data. You
must apply input data and valid signals only when ready is 1 (true). The algorithm ignores any input
data and valid signals when ready is 0 (false).
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Latency

The latency varies with the FFT length and the vector size. Use the getLatency function to find the
latency of a particular configuration. The latency is the number of cycles between the first valid input
and the first valid output, assuming that the input is contiguous.

When using the burst architecture with a contiguous input, if your design waits for ready to output 0
before de-asserting the input valid, then one extra cycle of data arrives at the input. This data sample
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is the first sample of the next frame. The algorithm can save one sample while processing the current
frame. Due to this one sample advance, the observed latency of the later frames (from input valid to
output valid) is one cycle shorter than the reported latency. The latency is measured from the first
cycle, when input valid is 1 to the first cycle when output valid is 1. The number of cycles between
when ready port is 0 and the output valid port is 1 is always latency - FFTLength.

TefT3+16994i

Cursor 1
Cursor 2

Performance

This resource and performance data is the synthesis result from the generated HDL targeted to a
Xilinx Virtex-6 (XC6VLX75T-1FF484) FPGA. The examples in the tables have this configuration:

* 1024 FFT length (default)

* Complex multiplication using 4 multipliers, 2 adders

* Output scaling enabled

* Natural order input, Bit-reversed output

* 16-bit complex input data

* Clock enables minimized (HDL Coder parameter)

Performance of the synthesized HDL code varies with your target and synthesis options. For instance,

reordering for a natural-order output uses more RAM than the default bit-reversed output, and real
input uses less RAM than complex input.

For a scalar input Radix 2”2 configuration, the design achieves 326 MHz clock frequency. The
latency is 1116 cycles. The design uses these resources.

Resource Number Used
LUT 4597

FFS 5353

Xilinx LogiCORE DSP48 12

Block RAM (16K) 6

When you vectorize the same Radix 2”2 implementation to process two 16-bit input samples in
parallel, the design achieves 316 MHz clock frequency. The latency is 600 cycles. The design uses
these resources.

Resource Number Used
LUT 7653

FFS 9322

Xilinx LogiCORE DSP48 24
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Resource Number Used

Block RAM (16K) 8

The block supports scalar input data only when implementing burst Radix 2 architecture. The burst
design achieves 309 MHz clock frequency. The latency is 5811 cycles. The design uses these
resources.

Resource Number Used
LUT 971

FFS 1254

Xilinx LogiCORE DSP48 3

Block RAM (16K) 6
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Version History
Introduced in R2014b

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this System object was named dsp.HDLFFT and was part of the DSP System Toolbox
product.

R2022a: FFT length of 4

You can now set the FFT length to 4 (22). In previous releases the FFT length had to be a power of 2
from 8 (23) to 216,
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The software supports double and single data types for simulation, but not for HDL code
generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also

Objects
dsp.HDLChannelizer | dsp.HDLIFFT |dsp.FFT
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Blocks
FFT | IFFT
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dsphdl.IFFT

Package: dsphdl

Compute inverse fast Fourier transform (IFFT)

Description

The dsphdl.IFFT System object provides two architectures to optimize either throughput or area.
Use the streaming Radix 22 architecture for high-throughput applications. This architecture
supports scalar or vector input data. You can achieve gigasamples-per-second (GSPS) throughput
using vector input. Use the burst Radix 2 architecture for a minimum resource implementation,
especially with large FFT sizes. Your system must be able to tolerate bursty data and higher latency.
This architecture supports only scalar input data. The object accepts real or complex data, provides
hardware-friendly control signals, and has optional output frame control signals.

To calculate the inverse fast Fourier transform:

1 Create the dsphdl.IFFT object and set its properties.
2 (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

IFFT N
IFFT N

dsphdl.IFFT
dsphdl.IFFT(Name,Value)

Description

IFFT N = dsphdl.IFFT returns an HDL IFFT System object, IFFT N, that performs a fast Fourier
transform.

IFFT_N = dsphdl.IFFT(Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in single quotes.

Example: ifft128 = dsphdl.IFFT('FFTLength',128)

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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Architecture — Hardware implementation
'Streaming Radix 272' (default) | 'Burst Radix 2'

Hardware implementation, specified as either:

* 'Streaming Radix 272' — Low-latency architecture. Supports gigasamples-per-second (GSPS)
throughput when you use vector input.

* 'Burst Radix 2'— Minimum resource architecture. Vector input is not supported when you
select this architecture. When you use this architecture, your input data must comply with the
ready backpressure signal.

ComplexMultiplication — HDL implementation of complex multipliers
'Use 4 multipliers and 2 adders' (default) | 'Use 3 multipliers and 5 adders'

HDL implementation of complex multipliers, specified as either 'Use 4 multipliers and 2
adders' or 'Use 3 multipliers and 5 adders'. Depending on your synthesis tool and target
device, one option may be faster or smaller.

BitReversedOutput — Order of the output data
true (default) | false

Order of the output data, specified as either:

* true — The output channel elements are bit reversed relative to the input order.

+ false — The output channel elements are in linear order.

The IFFT algorithm calculates output in the reverse order to the input. When you request output in
the same order as the input, the algorithm performs an extra reversal operation. For more
information on ordering of the output, see “Linear and Bit-Reversed Output Order”.

BitReversedInput — Expected order of the input data
false (default) | true

Expected order of the input data, specified as either:

* true — The input channel elements are in bit-reversed order.
+ false — The input channel elements are in linear order.
The IFFT algorithm calculates output in the reverse order to the input. When you request output in

the same order as the input, the algorithm performs an extra reversal operation. For more
information on ordering of the output, see “Linear and Bit-Reversed Output Order”.

Normalize — Output scaling
true (default) | false

Output scaling, specified as either:

* true — The object implements an overall 1/N scale factor by dividing the output of each butterfly
multiplication by 2. This adjustment keeps the output of the IFFT in the same amplitude range as
its input.

+ false — The object avoids overflow by increasing the word length by one bit after each butterfly
multiplication. The bit growth is the same for both architectures.
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FFTLength — Number of data points used for one FFT calculation
1024 (default) | integer power of 2 between 22 and 216

Number of data points used for one FFT calculation, specified as an integer power of 2 between 22
and 26, The object accepts FFT lengths outside this range, but they are not supported for HDL code
generation.

ResetInputPort — Enable reset argument
false (default) | true

Enable reset input argument to the object. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true), the
object captures data for processing.

StartOutputPort — Enable start output argument
false (default) | true

Enable startOut output argument of the object. When enabled, the object returns an additional
output signal that is true on the first cycle of each valid output frame.

EndOutputPort — Enable end output argument
false (default) | true

Enable endOut output argument of the object. When enabled, the object returns an additional output
signal that is true on the first cycle of each valid output frame.

RoundingMethod — Rounding mode used for fixed-point operations
"Floor"' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round’' | 'Zero'

Rounding mode used for fixed-point operations. When the input is any integer or fixed-point data
type, the IFFT algorithm uses fixed-point arithmetic for internal calculations. This option does not
apply when the input is single or double type. Rounding applies to twiddle factor multiplication and
scaling operations.

Usage

Syntax

[Y,validOut] = IFFT N(X,validIn)

[Y,validOut, ready] = IFFT N(X,validIn)
[Y,startOut,endOut,validOut] = IFFT N(X,validIn)
[Y,validOut] = IFFT N(X,validIn, resetIn)
[Y,startOut,endOut,validOut] = IFFT N(X,validIn, resetIn)

Description

[Y,validOut] = IFFT N(X,validIn) returns the inverse fast Fourier transform (IFFT), Y, of the
input, X, when validInis true. validIn and validOut are logical scalars that indicate the validity
of the input and output signals, respectively.

[Y,validOut, ready] = IFFT N(X,validIn) returns the inverse fast Fourier transform (IFFT)
when using the burst Radix 2 architecture. The ready signal indicates when the object has memory
available to accept new input samples. You must apply input data and valid signals only when
ready is 1 (true). The object ignores the input data and valid signals when ready is 0 (false).
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To use this syntax, set the Architecture property to 'Burst Radix 2'. For example:

IFFT N = dsphdl.IFFT(__ ,‘'Architecture','Burst Radix 2');
[y,validOut, ready] = IFFT_N(x,validIn)

[Y,startOut,endOut,validOut] = IFFT N(X,validIn) also returns frame control signals
startOut and endOut. startOut is true on the first sample of a frame of output data. endOut is
true for the last sample of a frame of output data.

To use this syntax, set the StartOutputPort and EndOutputPort properties to true. For example:
IFFT N = dsphdl.IFFT(_ _ ,'StartOutputPort',true, 'EndOutputPort',true);

[y,startOut,endOut,validOut] = IFFT _N(x,validIn)

[Y,validOut] = IFFT N(X,validIn, resetIn) returns the IFFT, Y, when validInis true and
resetInis false. When resetIn is true, the object stops the current calculation and clears all
internal state.

To use this syntax, set the ResetInputPort property to true. For example:

IFFT N = dsphdl.IFFT(__ , 'ResetInputPort’, true);
[y,validOut] = IFFT N(x,validIn, resetIn)

[Y,startOut,endOut,validOut] = IFFT N(X,validIn, resetIn) returns the IFFT Y, using
all optional control signals. You can use any combination of the optional port syntaxes.

Input Arguments

X — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values, in fixed-point or integer
format. Vector input is supported with 'Streaming Radix 272" architecture only. The vector size
must be a power of 2 between 1 and 64 that is not greater than the FFT length.

The software supports double and single data types for simulation, but not for HDL code
generation.

Data Types: fi | int8 | intl6 | int32 | int64 | uint8 | uint16 | uint32 | single | double

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataln argument.

Data Types: logical

resetIn — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.
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For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set ResetInputPort to true.

Data Types: logical
Output Arguments

Y — Output data
scalar or column vector of real or complex values

Output data, returned as a scalar or column vector of real or complex values. The output format
matches the format of the input data.

ready — Indicates object is ready for new input data
logical scalar

Control signal that indicates that the object is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the object ignores any input data in the next time step. This output is returned
when you select 'Burst Radix 2' architecture.

Data Types: logical

startOut — First sample of output frame
logical scalar

First sample of output frame, returned as a logical scalar. To enable this argument, set the
StartOutputPort property to true.
Data Types: logical

endOut — Last sample of output frame
logical scalar

Last sample of output frame, returned as a logical scalar. To enable this argument, set the
EndOutputPort property to true.

Data Types: Logical

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.

Data Types: logical
Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:
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release(obj)

Specific to dsphdl.IFFT
getLatency Latency of FFT calculation

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Create IFFT for HDL Code Generation

Create the specifications and input signal. This example uses a 128-point FFT.

128;

s = 40;

(0:N-1)'/Fs;

sin(2*pi*15*t) + 0.75*cos(2*pi*10*t);
X + .25*randn(size(x));

xed = sfi(y,32,16);

zeros(1l, 'like',y fixed);

<g‘~<~<><r-1--n2
S —h Il Il

o -

1}

Compute the FFT of the signal to use as the input to the IFFT object.

hdlfft = dsphdl.FFT('FFTLength',N, 'BitReversedOutput', false);
Yf = zeros(1,4*N);
validOut = false(1l,4*N);
for loop = 1:1:N
[Yf(loop),validOut(loop)] = hdlfft(complex(y fixed(loop)),true);

end
for loop = N+1:1:4*N

[Yf(loop),validOut(loop)] = hdlfft(complex(noOp), false);
end
Yf = Yf(validOut == 1);

Plot the single-sided amplitude spectrum.
plot(Fs/2*linspace(0,1,N/2),2*abs(Yf(1:N/2)/N))
title('Single-Sided Amplitude Spectrum of Noisy Signal y(t)"')

xlabel('Frequency (Hz)"')
ylabel('Output of FFT (f)")
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Single-Sided Amplitude Spectrum of Noisy Signal y(t)

1.2

Output of FFT (f)
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Frequency (Hz)

0

Select frequencies that hold the majority of the energy in the signal. The cumsum function does not
accept fixed-point arguments, so convert the data back to double.

[Ysort,i] = sort(abs(double(transpose(Yf(1:N)))),1, 'descend');

Ysort d = double(Ysort);

CumEnergy = sqrt(cumsum(Ysort d.”2))/norm(Ysort d);

j = find(CumEnergy > 0.9, 1);
disp(['Number of FFT coefficients that represent 90% of the ',
"total energy in the sequence: ', num2str(j)])

Yin = zeros(N,1);

Yin(i(1:j)) = Yf(i(1:3));

Number of FFT coefficients that represent 90% of the total energy in the sequence: 4

Write a function that creates and calls the IFFT System object™. You can generate HDL from this
function.

function [yOut,validOut] = HDLIFFT128(yIn,validIn)

%HDLIFFT128

Processes one sample of data using the dsphdl.IFFT System object(TM)
yIn is a fixed-point scalar or column vector.

validIn is a logical scalar.

You can generate HDL code from this function.

0° o° o° o°

persistent ifftl128;
if isempty(ifft128)
ifftl28 = dsphdl.IFFT('FFTLength',6128);
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end
[yOut,validOut] = ifft128(yIn,validIn);
end

Compute the IFFT by calling the function for each data sample.

Xt = zeros(1,3*N);

validOut = false(1,3*N);

for loop = 1:1:N
[Xt(loop),validOut(loop)]

HDLIFFT128(complex(Yin(loop)),true);

end

for loop = N+1:1:3*N
[Xt(loop),validOut(loop)]

HDLIFFT128(complex(0),false);
end

Discard invalid output samples. Then inspect the output and compare it with the input signal. The
original input is in green.

Xt = Xt(validOut==1);

Xt = bitrevorder(Xt);
norm(x-transpose(Xt(1:N)))
figure

stem(real (Xt))

figure

stem(real(x),'--g')

ans =

0.7863
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Create a Vector-Input IFFT for HDL Code Generation
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Create the specifications and input signal. This example uses a 128-point FFT and computes the
transform over 16 samples at a time.

N = 128;
V = 16;
Fs = 40;
t =

X=
y=

y fixed =
y _vec

(0:N-1)"'/Fs;

sin(2*pi*15*t) + 0.75*cos(2*pi*10*t);
X + .25*randn(size(x));
e sfi(y,32,24);
ct = reshape(y_fixed,V,N/V);

Compute the FFT of the signal, to use as the input to the IFFT object.

hdlfft =
loopCount =

Yf = zeros(V,loopCount);

validOut =
for loop =

= N/V;

else
i=
end

false(V, loopCount);

1:1:loopCount
if ( mod(loop,N/V) ==

mod (loop,N/V);

)

dsphdl.FFT('FFTLength',N);
getLatency (hdlfft,N,V)+N/V;
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[Yf(:,loop),validOut(loop)] = hdlfft(complex(y vect(:,i)), (Loop<=N/V));
end

Plot the single-sided amplitude spectrum.

C = Yf(:,validOut==1);

Yf flat = C(:);

Yr = bitrevorder(Yf flat);
plot(Fs/2*linspace(0,1,N/2),2*abs(Yr(1:N/2)/N))
title('Single-Sided Amplitude Spectrum of Noisy Signal y(t)"')
xlabel('Frequency (Hz)"')

ylabel('Output of FFT(f)")

Single-Sided Amplitude Spectrum of Noisy Signal y(t)
"12 T T T T T T T T T

0.8 7

0.6 7

Output of FFT(f)

041 7

0.2r 7

NV VANA A L/\J.\/
0 2 4 6 8 10 12 14 16 18 20

Frequency (Hz)

Select frequencies that hold the majority of the energy in the signal. The cumsum function doesn't
accept fixed-point arguments, so convert the data back to doub'le.

[Ysort,i] sort(abs(double(Yr(1:N))),1, 'descend');

CumEnergy sqrt(cumsum(Ysort.”2))/norm(Ysort);

j = find(CumEnergy > 0.9, 1);
disp(['Number of FFT coefficients that represent 90% of the '
‘total energy in the sequence: ', num2str(j)])

Yin = zeros(N,1);

Yin(i(1:3)) = Yr(i(1:3));

YinVect = reshape(Yin,V,N/V);

’

Number of FFT coefficients that represent 90% of the total energy in the sequence: 4
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Write a function that creates and calls the IFFT System object™. You can generate HDL from this

function.

function [yOut,validOut] = HDLIFFT128V16(yIn,validIn)
%HDLFFT128V16

Processes 16-sample vectors of FFT data

yIn is a fixed-point column vector.

validIn is a logical scalar value.

You can generate HDL code from this function.

o° o° o° o°

persistent ifft128v16;
if isempty(ifftl128v16)
ifft128v16 = dsphdl.IFFT('FFTLength',6128)
end
[yOut,validOut] = ifftl128v16(yIn,validIn);
end

Compute the IFFT by calling the function for each data sample.

Xt = zeros(V,loopCount);
validOut = false(V, loopCount);
for loop = 1:1:loopCount

[Xt(:,loop),validOut(loop)] = HDLIFFT128V16(complex(YinVect(:,1i)), (Loop<=N/V));

if ( mod(loop,N/V) == 0 )
i=N/V;
else
i = mod(loop,N/V);
end
end
ifftl28v1e =

dsphdl.IFFT with properties:

FFTLength: 128
Architecture: 'Streaming Radix 272'

ComplexMultiplication: 'Use 4 multipliers and 2 adders'

BitReversedQOutput: true
BitReversedInput: false
Normalize: true

Use get to show all properties

Discard invalid output samples. Then inspect the output and compare it with the input signal. The

original input is in green.

C = Xt(:,validOut==1);
Xt C(:);

Xt = bitrevorder(Xt);
norm(x-Xt(1:N))

figure

stem(real (Xt))

figure
stem(real(x),'--g')
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Explore Latency of HDL IFFT Object

The latency of the object varies with the FFT length and the vector size. Use the getLatency
function to find the latency of a particular configuration. The latency is the number of cycles between
the first valid input and the first valid output, assuming that the input is contiguous.

Create a new dsphdl.IFFT object and request the latency.

hdlifft = dsphdl.IFFT('FFTLength',512);
L512 = getlLatency(hdlifft)

L512 = 599

Request hypothetical latency information about a similar object with a different FFT length. The
properties of the original object do not change. When you do not specify a vector length, the function
assumes scalar input data.

L256 = getlLatency(hdlifft,256)
L256 = 329
N = hdlifft.FFTLength

N = 512

Request hypothetical latency information of a similar object that accepts eight-sample vector input.
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L256v8

getLatency(hdlifft,256,8)

L256v8

93

Enable scaling at each stage of the IFFT. The latency does not change.

hdlifft.Normalize = true;
L512n = getLatency(hdlifft)

L512n = 599

Request the same output order as the input order. This setting increases the latency because the
object must collect the output before reordering.

hdlifft.BitReversedOutput = false;
L512r = getlLatency(hdlifft)

L512r 1078

Algorithms
Streaming Radix 22

The streaming Radix 272 architecture implements a low-latency architecture. It saves resources
compared to a streaming Radix 2 implementation by factoring and grouping the FFT equation. The
architecture has log,(N) stages. Each stage contains two single-path delay feedback (SDF) butterflies
with memory controllers. When you use vector input, each stage operates on fewer input samples, so
some stages reduce to a simple butterfly, without SDF.
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16-Point FFT

Scalar Input —m—- SDF2

SDF1

SDF1 SDF2 . SDF1
2x1 Input !

SDF1 SDF2 SDF1
4x1 Input

The first SDF stage is a regular butterfly. The second stage multiplies the outputs of the first stage by
-j. To avoid a hardware multiplier, the block swaps the real and imaginary parts of the inputs, and
again swaps the imaginary parts of the resulting outputs. Each stage rounds the result of the twiddle
factor multiplication to the input word length. The twiddle factors have two integer bits, and the rest
of the bits are used for fractional bits. The twiddle factors have the same bit width as the input data,
WL. The twiddle factors have two integer bits, and WL-2 fractional bits.

If you enable scaling, the algorithm divides the result of each butterfly stage by 2. Scaling at each
stage avoids overflow, keeps the word length the same as the input, and results in an overall scale
factor of 1/N. If scaling is disabled, the algorithm avoids overflow by increasing the word length by 1
bit at each stage. The diagram shows the butterflies and internal word lengths of each stage, not

including the memory.
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Burst Radix 2

The burst Radix 2 architecture implements the FFT by using a single complex butterfly multiplier.
The algorithm cannot start until it has stored the entire input frame, and it cannot accept the next
frame until computations are complete. The output ready port indicates when the algorithm is ready
for new data. The diagram shows the burst architecture, with pipeline registers.

Twiddle
‘ ddr’
Mem

D = pipeline register

Controller

Ready

DataOut L
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Scaling
and
Rounding

Switch Switch

Memory Bank
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When you use this architecture, your input data must comply with the ready backpressure signal.
Control Signals

The algorithm processes input data only when the input valid port is 1. Output data is valid only
when the output valid port is 1.

When the optional input reset port is 1, the algorithm stops the current calculation and clears all
internal states. The algorithm begins new calculations when reset port is 0 and the input valid port
starts a new frame.
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Timing Diagram

This diagram shows the input and output valid port values for contiguous scalar input data,
streaming Radix 272 architecture, an FFT length of 1024, and a vector size of 16.

The diagram also shows the optional start and end port values that indicate frame boundaries. If you
enable the start port, the start port value pulses for one cycle with the first valid output of the frame.
If you enable the end port, the start port value pulses for one cycle with the last valid output of the
frame.

If you apply continuous input frames, the output will also be continuous after the initial latency.

The input valid port can be noncontiguous. Data accompanied by an input valid port is processed as
it arrives, and the resulting data is stored until a frame is filled. Then the algorithm returns
contiguous output samples in a frame of N (FFT length) cycles. This diagram shows noncontiguous
input and contiguous output for an FFT length of 512 and a vector size of 16.

When you use the burst architecture, you cannot provide the next frame of input data until memory
space is available. The ready signal indicates when the algorithm can accept new input data. You
must apply input data and valid signals only when ready is 1 (true). The algorithm ignores any input
data and valid signals when ready is 0 (false).

Latency

The latency varies with the FFT length and the vector size. Use the getLatency function to find the
latency of a particular configuration. The latency is the number of cycles between the first valid input
and the first valid output, assuming that the input is contiguous.

When using the burst architecture with a contiguous input, if your design waits for ready to output 0
before de-asserting the input valid, then one extra cycle of data arrives at the input. This data sample
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is the first sample of the next frame. The algorithm can save one sample while processing the current
frame. Due to this one sample advance, the observed latency of the later frames (from input valid to
output valid) is one cycle shorter than the reported latency. The latency is measured from the first
cycle, when input valid is 1 to the first cycle when output valid is 1. The number of cycles between
when ready port is 0 and the output valid port is 1 is always latency - FFTLength.

TefT3+16994i

Cursor 1
Cursor 2

Performance

This resource and performance data is the synthesis result from the generated HDL targeted to a
Xilinx Virtex-6 (XC6VLX75T-1FF484) FPGA. The examples in the tables have this configuration:

* 1024 FFT length (default)

* Complex multiplication using 4 multipliers, 2 adders

* Output scaling enabled

* Natural order input, Bit-reversed output

* 16-bit complex input data

* Clock enables minimized (HDL Coder parameter)

Performance of the synthesized HDL code varies with your target and synthesis options. For instance,

reordering for a natural-order output uses more RAM than the default bit-reversed output, and real
input uses less RAM than complex input.

For a scalar input Radix 2”2 configuration, the design achieves 326 MHz clock frequency. The
latency is 1116 cycles. The design uses these resources.

Resource Number Used
LUT 4597

FFS 5353

Xilinx LogiCORE DSP48 12

Block RAM (16K) 6

When you vectorize the same Radix 2”2 implementation to process two 16-bit input samples in
parallel, the design achieves 316 MHz clock frequency. The latency is 600 cycles. The design uses
these resources.

Resource Number Used
LUT 7653

FFS 9322

Xilinx LogiCORE DSP48 24
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Resource

Number Used

Block RAM (16K)

8

The block supports scalar input data only when implementing burst Radix 2 architecture. The burst
design achieves 309 MHz clock frequency. The latency is 5811 cycles. The design uses these

resources.
Resource Number Used
LUT 971

FFS 1254

Xilinx LogiCORE DSP48 3

Block RAM (16K) 6

Version History
Introduced in R2014b

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this System object was named dsp.HDLIFFT and was part of the DSP System
Toolbox product.

R2022a: FFT length of 4

You can now set the FFT length to 4 (22). In previous releases the FFT length had to be a power of 2
from 8 (23) to 216,

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The software supports double and single data types for simulation, but not for HDL code
generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also

Objects
dsphdl.FFT | dsp.IFFT
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Blocks
IFFT | FFT
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dsphdl.Channelizer

Package: dsphdl

Polyphase filter bank and fast Fourier transform

Description

The dsphdl.Channelizer System object separates a broadband input signal into multiple
narrowband output signals. It provides hardware speed and area optimization for streaming data
applications. The object accepts scalar or vector input of real or complex data, provides hardware-
friendly control signals, and has optional output frame control signals. You can achieve gigasamples-
per-second (GSPS) throughput by using vector input. The object implements a polyphase filter, with
one subfilter per input vector element. The hardware implementation interleaves the subfilters, which
results in sharing each filter multiplier (FFT Length / Input Size) times. The object implements the
same pipelined Radix 2”2 FFT algorithm as the dsphdl.FFT System object.

To channelize input data:

1 Create the dsphdl.Channelizer object and set its properties.
2  Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

channelizer = dsphdl.Channelizer
channelizer = dsphdl.Channelizer(Name,Value)
Description

channelizer = dsphdl.Channelizer returns a System object, channelizer, that implements a
raised-cosine filter and an 8-point FFT.

channelizer = dsphdl.Channelizer(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in single quotes.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System

Objects.
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NumFrequencyBands — FFT length
8 (default) | integer power of two

FFT length, specified as an integer power of two. For HDL code generation, the FFT length must be
between 22 and 216, inclusive.

FilterCoefficients — Polyphase filter coefficients
[-0.032 0.121 0.318 0.482 0.546 0.482 0.318 0.121 -0.032] (default) | vector of real or
complex numeric values

Polyphase filter coefficients, specified as a vector of numeric values. If the number of coefficients is
not a multiple of NumFrequencyBands, the object pads this vector with zeros. The default filter
specification is a raised-cosine FIR filter, rcosdesign(0.25,2,4, 'sqrt'). You can specify a vector
of coefficients or a call to a filter design function that returns the coefficient values. By default, the
object casts the coefficients to the same data type as the input.

FilterStructure — Filter design properties or coefficients
‘Direct form transposed' (default) | 'Direct form systolic'

Specify the HDL filter architecture as one of these structures:

* Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications. For architecture and performance details, see “Fully Parallel
Transposed Architecture”.

* Direct form systolic — This architecture provides a fully parallel filter implementation that
makes efficient use of Intel and Xilinx DSP blocks. For architecture and performance details, see
“Fully Parallel Systolic Architecture”.

ComplexMultiplication — HDL implementation of complex multipliers
'Use 4 multipliers and 2 adders' (default) | 'Use 3 multipliers and 5 adders'

HDL implementation of complex multipliers, specified as either 'Use 4 multipliers and 2
adders' or 'Use 3 multipliers and 5 adders'. Depending on your synthesis tool and target
device, one option may be faster or smaller.

OutputSize — Size of output data
'Same as number of frequency bands' (default) | 'Same as input size'

Size of output data, specified as:

* 'Same as number of frequency bands' — Output data is a 1-by-M vector, where M is the
FFT length.

* 'Same as input size' — Output data is an M-by-1 vector, where M is the input vector size.
The output order is bit natural for both output sizes.

Normalize — FFT scaling
true (default) | false

FFT output scaling, specified as either:

* true — The FFT implements an overall 1/N scale factor by scaling the result of each pipeline
stage by 2. This adjustment keeps the output of the FFT in the same amplitude range as its input.

+ false — The FFT avoids overflow by increasing the word length by one bit at each stage.
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RoundingMethod — Rounding mode used for internal fixed-point calculations
"Floor"' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round’' | 'Zero'

Rounding mode used for fixed-point operations. The object uses fixed-point arithmetic for internal
calculations when the input is any integer or fixed-point data type. This option does not apply when
the input is single or double. Each FFT stage rounds after the twiddle factor multiplication but
before the butterflies. Rounding can also occur when casting the coefficients and the output of the
polyphase filter to the data types you specify.

OverflowAction — Overflow handling for internal fixed-point calculations
‘Wrap' (default) | 'Saturate'

“Overflow Handling” used for fixed-point operations. The object uses fixed-point arithmetic for
internal calculations when the input is any integer or fixed-point data type. This option does not apply
when the input is single or double. This option applies to casting the coefficients and the output of
the polyphase filter to the data types you specify.

The FFT algorithm avoids overflow by either scaling the output of each stage (Normalize enabled),
or by increasing the word length by 1 bit at each stage (Normalize disabled).

CoefficientsDataType — Data type of filter coefficients
'Same word length as input' (default) | numerictype object

The object casts the polyphase filter coefficients to this data type, using the rounding and overflow
settings you specify. When you specify 'Same word length as input' (default), the object selects
the binary point using f1i() best-precision rules.

FilterOutputDataType — Data type of output of polyphase filter
‘Same word length as input' (default) | 'Full precision' | numerictype object

Data type of the output of the polyphase filter, specified as 'Same word length as input’,
"Full precision', or a numerictype object. The object casts the output of the polyphase filter
(the input to the FFT) to this data type, using the rounding and overflow settings you specify. When
you specify 'Full precision’, the object selects a best-precision binary point by considering the
values of your filter coefficients and the range of your input data type.

By default, the FFT logic does not change the data type. When you disable Normalize, the FFT
algorithm avoids overflow by increasing the word length by 1 bit at each stage.

ResetInputPort — Enable reset argument
false (default) | true

Enable reset input argument to the object. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true), the
object captures data for processing.

StartOutputPort — Enable start output argument
false (default) | true

Enable startOut output argument of the object. When enabled, the object returns an additional
output signal that is 1 (true) on the first cycle of each valid output frame.

EndOutputPort — Enable end output argument
false (default) | true
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Enable endOut output argument of the object. When enabled, the object returns an additional output
signal that is 1 (true) on the first cycle of each valid output frame.

Usage

Syntax

[dataOut,validOut] = channelizer(dataIn,validIn)
[dataOut,validOut] = channelizer(datalIn,validIn, reset)
[dataOut,startOut,endOut,validOut] = channelizer( )

Description

[dataOut,validOut] = channelizer(dataln,validIn) filters and computes a fast Fourier
transform, and returns the frequency channels, dataOut, detected in the input signal, dataIn, when
validInis 1 (true). The validIn and validOut arguments are logical scalars that indicate the
validity of the input and output signals, respectively.

[dataOut,validOut] = channelizer(dataln,validIn, reset) returns the frequency
channels, dataOut, detected in the input signal, dataIn, when validInis 1 (true) and reset is 0
(false). When reset is 1 (true), the object stops the current calculation and clears all internal state.

To use this syntax, set the ResetInputPort property to true. For example:
channelizer = dsphdl.Channelizer(..., 'ResetInputPort', true);
[datalOut,validOut] = channelizer(dataIn,validIn, reset)

[dataOut,startOut,endOut,validOut] = channelizer( ) returns the frequency
channels, dataOut, computed from the input arguments of any of the previous syntaxes. startOut
is 1 (true) for the first sample of a frame of output data. endOut is 1 (true) for the last sample of a
frame of output data.

To use this syntax, set the StartOutputPort and EndOutputPort properties to true. For example:
channelizer = dsphdl.Channelizer(..., 'StartOutputPort', true, 'EndOutputPort', true);

iAAtaOUt,startOut,endOut,validOut] = channelizer(dataIn,validIn)
Input Arguments

dataIn — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values.

The vector size must be a power of 2 and in the range [2, 64], and is not greater than the number of
channels (FFT length).

The software supports double and single data types for simulation, but not for HDL code
generation.

The object does not accept uint64 data.
Data Types: fi | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 | single | double
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validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validInis 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataln argument.

Data Types: logical

reset — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set ResetInputPort to true.

Data Types: logical
Output Arguments

dataOut — Frequency channel output data
row vector

Frequency channel output data, returned as a row vector.

* Ifyouset QutputSizeto 'Same as number of frequency bands' (default), the output data
is a 1-by-M vector, where M is the FFT length.

» Ifyouset QutputSizeto 'Same as input size', the output data is an M-by-1 vector, where M
is the input vector size.

The output order is bit natural for either output size. The data type is a result of the
FilterOutputDataType and the FFT bit growth necessary to avoid overflow.

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.

Data Types: logical

startOut — First valid cycle of output data
logical scalar

First sample of output frame, returned as a logical scalar. The object sets startOut to 1 (true)
during the first valid sample on dataOut.

Dependencies

To enable this argument, set StartOutputPort to true.
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Data Types: logical

endOut — Last valid cycle of output data
logical scalar

Last sample of output frame, returned as a logical scalar. The object sets endOut to 1 (true) during
the last valid sample on dataOut.

Dependencies

To enable this argument, set EndOutputPort to true.

Data Types: Llogical

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsphdl.Channelizer

getLatency Latency of channelizer calculation

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Create Channelizer for HDL Generation
Create a function that contains a channelizer object and supports HDL code generation.

Create the specifications and input signal. The signal has 8 frequency channels.

N = 8;

loopCount = 1024;

offsets = [-40 -30 -20 10 15 25 35 -15];

sinewave = dsp.SineWave('ComplexOutput',true, 'Frequency',
offsets+(-375:125:500), 'SamplesPerFrame', LloopCount);

sa = spectrumAnalyzer('ShowLegend', true,
'SampleRate',sinewave.SampleRate/N);

Write a function that creates and calls the channelizer System object™. You can generate HDL from
this function.

function [yOut,validOut] = HDLChannelizer8(yIn,validIn)
%HDLChannelizer8
% Process one sample of data using the dsphdl.Channelizer System object
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yIn is a fixed-point scalar or column vector.
validIn is a logical scalar value.
You can generate HDL code from this function.

o° o o°

persistent channelize8;
coder.extrinsic('tf');
coder.extrinsic('dsp.Channelizer');

if isempty(channelize8)
% Use filter coeffs from non-HDL channelizer, or supply your own.
channelizer = coder.const(dsp.Channelizer('NumFrequencyBands',8));
coeff = coder.const(tf(channelizer));

channelize8 = dsphdl.Channelizer('NumFrequencyBands',8, 'FilterCoefficients',coeff);

end
[yOut,validOut] = channelize8(yIn,validIn);
end

Channelize the input data by calling the object for each data sample.

y = zeros(loopCount/N,N);
validOut = false(loopCount/N,1);
yValid = zeros(loopCount/(N*N),N);
for reps=1:30
x = fi(sum(sinewave(),2),1,18);
for loop=1:length(x)
[y(loop, :),validOut(loop)]= HDLChannelizer8(x(loop),true);

end
yValid = y(validOut == 1,:);
sa(yValid);

end
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AMNALYZER ESTIMATIOM MEASUREMENTS SPECTRUM SPECTRAL MASK  CHANNMEL MEASUREMENTS 0
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-10 0
Frequency (Hz)

Processing VBW = 215868 mHz RBW = 122.070 mHz Sample Rate = 125.000 Hz Frames =25 T = 25.5440

Explore Latency of Channelizer Object

The latency of the dsphdl.Channelizer object varies with the FFT length, filter structure, vector
size, and input type. Use the getLatency function to find the latency of a particular configuration.
The latency is measured as the number of cycles between the first valid input and the first valid
output, assuming that the input is contiguous. The number of filter coefficients does not affect the
latency. Setting the output size equal to the input size reduces the latency because the samples are
not saved and reordered.

Create a dsphdl.Channelizer object with filter structure set to direct form transposed and request
the latency.

channelize = dsphdl.Channelizer('NumFrequencyBands',512, 'FilterStructure','Direct form transpost
L512 = getLatency(channelize)

L512 = 1118

Request hypothetical latency information about a similar object with a different number of frequency
bands (FFT length). The properties of the original object do not change.

L256

getLatency(channelize, 256)
L256

592

N = channelize.NumFrequencyBands
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N = 512
Request hypothetical latency information of a similar object that accepts eight-sample vector input.

L256v8

getLatency(channelize,256,8)

L256v8 132

Enable scaling at each stage of the FFT. The latency does not change.

channelize.Normalize = true;
L512n = getlLatency(channelize)

L512n = 1118

Request the same output size and order as the input data. The latency decreases because the object
does not need to store and reorder the data before output. The default input size is scalar.

channelize.OutputSize = 'Same as input size';
L512r = getlLatency(channelize)

L512r = 1084

Check the latency of a vector input implementation where the input and output are the same size.
Specify the current value of the FFT length and a vector size of 8 samples. The latency decreases
because the object computes results in parallel when the input is a vector.

L512rv8 = getLatency(channelize, channelize.NumFrequencyBands,8)

L512rv8 218

Check the latency of a vector input implementation where the input type is complex. Specify the
current value of the FFT length and a vector size of 16 samples.

L512rv16i = getlLatency(channelize,channelize.NumFrequencyBands,16,true)

L512rv16i = 152

Algorithms

This object implements the algorithm described on the Channelizer block reference page.

Note The output of the dsphdl.Channelizer object does not match the output from the
dsp.Channelizer object sample-for-sample. This mismatch is because the objects apply the input
samples to the subfilters in different orders. The dsphdl.Channelizer object applies input X(0) to
subfilter Ey.1(2), X(1) to subfilter Ej.5(2), ..., X(M-1) to subfilter E,(z). The channels detected by both
objects match, when analyzed over multiple frames.

Latency

The latency varies with the FFT length, vector size, and filter structure. Use the getLatency
function to find the latency of a particular configuration. The latency is the number of cycles between
the first valid input and the first valid output, assuming that the input is contiguous. The filter
coefficients do not affect the latency. Setting the output size equal to the input size reduces the
latency, because the samples are not saved and reordered.
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Control Signals

This diagram shows validIn and validOut signals for contiguous input data with a vector size of
16, an FFT length of 512, and when you select the Direct form transposed filter architecture. In
this example, the output vector size is specified same as the input vector size.

The diagram also shows the optional startOut and endOut signals that indicate frame boundaries.
When enabled, startOut pulses for one cycle with the first validOut of the frame, and endQut
pulses for one cycle with the last validOut of the frame.

If you apply continuous input frames (no gap in validIn between frames), the output will also be
continuous, after the initial latency.

> datain
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The validIn signal can be noncontiguous. Data accompanied by a validIn signal is stored until a
frame is filled. Then the data in output is a contiguous frame of N/M cycles. This diagram shows
noncontiguous input and contiguous output for an FFT length of 512 and a vector size of 16 samples.

fifa7a+ffid4di b2
0

Performance

These resource and performance data are the place-and-route results from the generated HDL
targeted to a Xilinx Zyng- 7000 ZC706 evaluation board. The three examples in the tables use this
common configuration.

* FFT length (default) — 8

 Filter length — 96 coefficients

» Filter structure — Direct form transposed

* 16-bit complex input data

* Coefficient data type — Same word length as input

» Filter output data type — Same word length as input

* Complex multiplication — Use 4 multipliers and 2 adders

* Output scaling — Enabled

* Output vector size — Same as input size

Performance of the synthesized HDL code varies with your target and synthesis options.
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For scalar input, the design achieves a clock frequency of 506.84 MHz. The latency is 51 cycles. The
subfilters share each multiplier eight (N) times. The design uses these resources.

Resource Number Used
LUT 2898

FFS 3746

Xilinx LogiCORE DSP48 28

For four-sample vector input, the design achieves a clock frequency of 452 MHz. The latency is 37
cycles. The subfilters share each multiplier twice (N/M). The design uses these resources.

Resource Number Used
LUT 1991

FFS 8305

Xilinx LogiCORE DSP48 104

For eight-sample vector input, the design achieves a clock frequency of 360 MHz. The latency is 18
cycles. When the input size is the same as the FFT length, the subfilters do not share any multipliers.

The design uses these resources.

Resource Number Used
LUT 1683

FFS 2992

Xilinx LogiCORE DSP48 208

Version History
Introduced in R2017a

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this System object was named dsp.HDLChannelizer and was part of the DSP
System Toolbox product.

R2022a: FFT length of 4
You can now set the FFT length to 4 (22). In previous releases the FFT length had to be a power of 2
from 8 (23) to 216.

R2022a: Direct form systolic filter structure support

This System object now supports fully parallel systolic architecture. To use this architecture, set the
Filter structure property toDirect form systolic.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The software supports double and single data types for simulation, but not for HDL code
generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).
See Also

Blocks
Channelizer | Channel Synthesizer | FFT

Objects
dsphdl.ChannelSynthesizer | dsphdl.FFT
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dsphdl.FIRDecimator

Package: dsphdl

Finite impulse response (FIR) decimation filter

Description

The dsphdl.FIRDecimator System object implements a single-rate polyphase FIR decimation filter
that is optimized for HDL code generation. The object provides a hardware-friendly interface with
input and output control signals. To provide a cycle-accurate simulation of the generated HDL code,
the object models architectural latency including pipeline registers and resource sharing.

The object accepts scalar or vector input. When you use vector input and the vector size is less than
the decimation factor, the decimation factor must be an integer multiple of the vector size. In this
case, the output is scalar and an output valid signal indicates which samples are valid after
decimation. The output data is valid every DecimationFactor/VectorSize samples. The waveform
shows an input vector of four samples and a decimation factor of eight. The output data is a scalar
that is valid every second cycle.

valid
» data

.
» data

When you use vector input and the vector size is greater than the decimation factor, the vector size
must be an integer multiple of the decimation factor. In this case, the output is a vector of VectorSize/
DecimationFactor samples. The waveform shows an input vector of eight samples and a decimation
factor of four. The output data is a vector of two samples on every cycle.

The object provides two filter structures. The direct form systolic architecture provides an
implementation that makes efficient use of Intel and Xilinx DSP blocks. This architecture can be fully
parallel or serial. To use a serial architecture, the input samples must be spaced out with a regular
number of invalid cycles between the valid samples. The direct form transposed architecture is a fully
parallel implementation and is suitable for FPGA and ASIC applications. For a filter implementation
that matches multipliers, pipeline registers, and pre-adders to the DSP configuration of your FPGA
vendor, specify your target device when you generate HDL code.

All filter structures optimize hardware resources by sharing multipliers for symmetric or
antisymmetric filters and by removing the multipliers for zero-valued coefficients such as in half-band
filters and Hilbert transforms.

The object implements one filter for each sample in the input vector. The object then shares this filter
between the polyphase subfilters by interleaving the subfilter coefficients in time.
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To filter and decimate input data with an HDL-optimized algorithm:

1 Create the dsphdl.FIRDecimator object and set its properties.
2  Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

firDecim = dsphdl.FIRDecimator

firDecim = dsphdl.FIRDecimator(dec,num)
firDecim = dsphdl.FIRDecimator( _ ,Name,Value)
Description

firDecim = dsphdl.FIRDecimator creates a default HDL-optimized FIR decimation filter System
object.

firDecim = dsphdl.FIRDecimator(dec,num) sets the DecimationFactor property to dec and
the Numerator property to num.

firDecim = dsphdl.FIRDecimator( __ ,Name,Value) sets properties by using one or more
name-value pairs in addition to any input argument combination from previous syntaxes. Enclose
each property name in quotes. For example, 'FilterStructure', 'Direct form transposed'
specifies the filter architecture as a fully parallel implementation that is suitable for FPGA and ASIC
applications.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Main

Numerator — FIR filter coefficients
firl(35,0.4) (default) | real- or complex-valued vector

FIR filter coefficients, specified as a real- or complex-valued vector. You can specify the vector as a
workspace variable or as a call to a filter design function. When the input data type is a floating-point
type, the object casts the coefficients to the same data type as the input. When the input data type is
an integer type or a fixed-point type, you can modify the coefficient data type by using the
CoefficientsDataType property.

Example: firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]) defines coefficients using a linear-phase
filter design function.
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Data Types: single | double | int8 | intl6 | int32 | uint8 | uintl6 | uint32

FilterStructure — HDL filter architecture
'‘Direct form systolic' (default) | '‘Direct form transposed'’

HDL filter architecture, specified as one of these structures:

* 'Direct form systolic' — This architecture provides a fully parallel or partly serial filter
implementation that makes efficient use of Intel and Xilinx DSP blocks. For a partly serial
implementation, specify a value greater than 1 for the NumCycles property. You cannot use frame-
based input with the partly serial architecture.

When NumCycles is greater than 1, the object chooses a filter architecture that results in the
fewest multipliers. If NumCycles allows for a single multiplier in each subfilter, then the object
implements a single serial filter and decimates the output samples.

* 'Direct form transposed' — This architecture is a fully parallel implementation that is
suitable for FPGA and ASIC applications.

The object implements a polyphase decomposition filter by using dsphdl.FIRFilter objects. All
implementations share resources by interleaving the subfilter coefficients over one filter
implementation for each sample in the input vector.

For architecture details, see “FIR Filter Architectures for FPGAs and ASICs”.

DecimationFactor — Decimation factor
2 (default) | integer greater than two

Decimation factor, specified as integer greater than two. When you use vector input and the vector
size is less than the decimation factor, the decimation factor must be an integer multiple of the vector
size. When you use vector input and the vector size is greater than the decimation factor, the vector
size must be an integer multiple of the decimation factor.

NumCycles — Serialization requirement for input timing
1 (default) | positive integer

Serialization requirement for input timing, specified as a positive integer. This property represents N,
the minimum number of cycles between valid input samples. To implement a fully serial architecture,
set NumCycles to a value greater than the filter length, L, or to Inf.

The object applies coefficient optimizations before serialization, so the sharing factor of the final filter
can be lower than the number of cycles that you specified.

Dependencies

To enable this property, set FilterStructure to 'Direct form systolic'.
You cannot use frame-based input with NumCycles greater than 1.

Data Types

RoundingMethod — Rounding method for type-casting output
'"Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method for type-casting the output, specified as 'Floor', 'Ceiling', 'Convergent’,
'Nearest', 'Round', or 'Zero'. The object uses this property when casting the output to the data
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type specified by the OutputDataType property. When the input data type is floating point, the
object ignores this property. For more details, see “Rounding Modes”.

OverflowAction — Overflow handling for type-casting the output
‘"Wrap' (default) | 'Saturate'

Overflow handling for type-casting the output, specified as 'Wrap' or 'Saturate'. The object uses
this property when casting the output to the data type specified by the QutputDataType property.
When the input data type is floating point, the object ignores this property. For more details, see
“Overflow Handling”.

CoefficientsDataType — Data type of filter coefficients
‘Same word length as input' (default) | numerictype object

Data type of filter coefficients, specified as 'Same word length as input' or a numerictype
object. To specify a numerictype object, call numerictype(s,w, ), where:

* sis 1 for signed and 0 for unsigned.

* wis the word length in bits.

* fis the number of fractional bits.

The object casts the filter coefficients to the specified data type. The quantization rounds to the

nearest representable value and saturates on overflow. When the input data type is floating point, the
object ignores this property.

OutputDataType — Data type of filter output
"Full precision' (default) | 'Same word length as input' | numerictype object

Data type of the filter output, specified as 'Same word length as input', 'Full precision’,
or a numerictype object. To specify a numerictype object, call numerictype(s,w, f), where:

* sis 1 for signed and 0 for unsigned.

* wis the word length in bits.

* fis the number of fractional bits.

The object casts the output of the filter to the specified data type. The quantization uses the settings

of the RoundingMethod and OverflowAction properties. When the input data type is floating
point, the object ignores this property.

The object increases the word length for full precision inside each filter tap and casts the final output
to the specified type. The maximum final internal data type (WF) depends on the input data type (WI),
the coefficient data type (WC), and the number of coefficients (L) and is given by

WF = WI + WC + ceil(log2(L)).

Because the coefficient values limit the potential growth, usually the actual full-precision internal
word length is smaller than WF.

Control Arguments

ResetInputPort — Option to enable reset input argument
false (default) | true
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Option to enable the reset input argument, specified as true or false. When you set this property
to true, the object expects a value for the reset input argument. The reset signal implements a
local synchronous reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

HDLGlobalReset — Option to connect data path registers to generated HDL global reset
signal
false (default) | true

Option to connect the data path registers to the generated HDL global reset signal, specified as true
or false. Set this property to true to connect the generated HDL global reset signal to the data
path registers. This property does not change the arguments of the object or modify simulation
behavior in MATLAB. When you set this property to false, the generated HDL global reset clears
only the control path registers. The generated HDL global reset can be synchronous or asynchronous
depending on your HDL code generation settings.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Usage

Syntax

[dataOut,validOut] = firDecim(dataIn,validIn)
[dataOut,validOut] firDecim(datalIn,validIn, reset)

Description

[dataOut,validOut]
is true.

firDecim(dataIn,validIn) filters the input data only when validIn

[dataOut,validOut] = firDecim(dataln,validIn, reset) filters data when reset is false.
When reset is true, the object resets the filter registers. The object expects the reset argument
only when you set the ResetInputPort property to true.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Input Arguments

dataln — Input data
scalar | vector

Input data, specified as a real- or complex-valued scalar or vector. When you use vector input and the
vector size is less than the decimation factor, the decimation factor must be an integer multiple of the
vector size. When you use vector input and the vector size is greater than the decimation factor, the
vector size must be an integer multiple of the decimation factor. The vector size must be less than or
equal to 64.

When the input data type is an integer type or fixed-point type, the object uses fixed-point arithmetic
for internal calculations.
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The software supports double and single data types for simulation, but not for HDL code
generation.

Data Types: fi | single | double | int8 | int16 | int32 | uint8 | uintl1l6 | uint32
Complex Number Support: Yes

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataln argument.

Data Types: logical

reset — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set the ResetInputPort property to true.

Data Types: logical
Output Arguments

dataOut — Filtered output data
scalar | vector

Filtered output data, returned as a real- or complex-valued scalar or column vector. When the input
data is floating point, the output data inherits the data type of the input data. When the input data is
an integer type or fixed-point type, the OutputDataType property specifies the output data type.

The output valid signal indicates which samples are valid after decimation. When the input vector
size is greater than the decimation factor, the output is a vector of VectorSize/DecimationFactor
samples.

Data Types: fi | single | double

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.

Data Types: logical
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Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsphdl.FIRDecimator
getLatency Latency of FIR decimation filter

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Algorithms

This System object implements the algorithms described on the FIR Decimator block reference page.

Note The output of the dsphdl.FIRDecimator object does not match the output from the
dsp.FIRDecimation object sample-for-sample. This difference is mainly because of the phase that
the samples are applied across the subfilters. To match the dsp.FIRDecimation object, apply
DecimationFactor - 1 zeroes to the dsphdl.FIRDecimator object at the start of the data stream.

The dsp.FIRDecimation object also uses slightly different data types for full-precision calculations.
The different data types can also introduce differences in output values if the values overflow the
internal datatypes.

Version History
Introduced in R2020b

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this System object was named dsp.HDLFIRDecimator and was part of the DSP
System Toolbox product.

R2022a: Serial systolic architecture

This object supports partly and fully serial systolic architecture. This architecture enables you to
share hardware resources if there is a regular pattern of invalid cycles between valid input samples.
To use the serial systolic architecture, set Structureto 'Direct form systolic' and
NumCycles to a value greater than 1.

R2022a: Input vector size can be greater than decimation factor

In previous releases, the object did not support input vector sizes greater than the decimation factor.
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The software supports double and single data types for simulation, but not for HDL code
generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also

Objects
dsphdl.FIRFilter

Blocks
FIR Decimator | Discrete FIR Filter
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dsphdl.FIRInterpolator

Package: dsphdl

Finite impulse response (FIR) interpolation filter

Description

The dsphdl.FIRInterpolator System object implements a single-rate polyphase FIR interpolation
filter that is optimized for HDL code generation. The object provides a hardware-friendly interface
with input and output control signals. To provide a cycle-accurate simulation of the generated HDL
code, the object models architectural latency including pipeline registers and resource sharing.

The object accepts scalar or vector input and outputs a scalar or vector depending on the
interpolation factor and the number of cycles between input samples. The object implements a
polyphase decomposition with InterpolationFactor subfilters. The filter can implement a serial
architecture if there is regular spacing between input samples.

The object provides two filter structures. The direct form systolic architecture provides a fully
parallel implementation that makes efficient use of Intel and Xilinx DSP blocks. The direct form
transposed architecture is a fully parallel implementation that is suitable for FPGA and ASIC
applications. For a filter implementation that matches multipliers, pipeline registers, and pre-adders
to the DSP configuration of your FPGA vendor, specify your target device when you generate HDL
code.

All filter structures optimize hardware resources by sharing multipliers for symmetric or
antisymmetric filters and by removing the multipliers for zero-valued coefficients such as in half-band
filters and Hilbert transforms.

To filter and interpolate input data with an HDL-optimized algorithm::

1 Create the dsphdl.FIRInterpolator object and set its properties.
2 (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

firInterp = dsphdl.FIRInterpolator

firInterp = dsphdl.FIRInterpolator(INTERP,NUM)
firInterp = dsphdl.FIRInterpolator(  ,Name,Value)
Description

firInterp = dsphdl.FIRInterpolator returns a System object firInterp, which upsamples
and filters the input signal with the default settings.
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firInterp = dsphdl.FIRInterpolator(INTERP,NUM) returns a System object firInterp
with the InterpolationFactor property set to INTERP and the Numerator property set to NUM.

firInterp = dsphdl.FIRInterpolator( _ ,Name,Value) returns an HDL FIR Interpolation
System object firInterp, with specified property Name set to the specified Value. You can specify
additional properties as name-value arguments in any order as

(Namel,Valuel, ...,NameN, ValueN).

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Main

FilterStructure — HDL filter architecture
‘Direct form systolic' (default) | ‘Direct form transposed'

HDL filter architecture, specified as one of these structures:

* 'Direct form systolic' — This architecture provides a fully parallel filter implementation
that makes efficient use of Intel and Xilinx DSP blocks. For a partly serial implementation, specify
a value greater than 1 for the NumCycles property. You cannot use frame-based input with the
partly serial architecture.

* 'Direct form transposed' — This architecture is a fully parallel implementation that is
suitable for FPGA and ASIC applications.

The object implements a polyphase decomposition filter by using dsphdl.FIRFilter System
objects. Each filter phase shares resources internally where coefficients and serial options allow. For
architecture details, see “FIR Filter Architectures for FPGAs and ASICs”. When you use a partly-
serial systolic architecture and NumCycles is larger than the filter length divided by the interpolation
factor, the object interleaves each phase of coefficients over a single FIR filter to share resources
between phases.

Numerator — FIR filter coefficients
firl(35,0.4) (default) | real- or complex-valued vector

FIR filter coefficients, specified as a real- or complex-valued vector. You can specify the vector as a
workspace variable or as a call to a filter design function. When the input data type is a floating-point
type, the object casts the coefficients to the same data type as the input. When the input data type is
an integer type or a fixed-point type, you can modify the coefficient data type by using the
CoefficientsDataType property.

Example: firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]) defines coefficients by using a linear-phase
filter design function.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

InterpolationFactor — Interpolation factor
2 (default) | integer greater than two
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Interpolation factor, specified as integer greater than two. The output vector size is InputSize *
InterpolationFactor. The output vector size must be less than 64 samples.

NumCycles — Minimum number of cycles between valid input samples
1 (default) | positive integer

Specify the minimum number of cycles between the valid input samples as 1 or a positive integer.
This property represents N, the minimum number of cycles between valid input samples. When you
set NumCycles greater than the filter length, L, and the input and coefficients are both real, the filter
uses a single multiplier.

Because the object applies coefficient optimizations before serialization, the sharing factor of the final
filter can be lower than the number of cycles that you specified.

Dependencies

To enable this parameter, set FilterStructureto 'Direct form systolic'.
You cannot use frame-based input with NumCycles greater than 1.

Data Types

RoundingMethod — Rounding method for type-casting output
'"Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method for type-casting the output, specified as 'Floor', 'Ceiling', 'Convergent’,
'Nearest', 'Round', or 'Zero'. The object uses this property when casting the output to the data
type specified by the OutputDataType property. When the input data type is floating point, the
object ignores this property. For more details, see “Rounding Modes”.

OverflowAction — Overflow handling for type-casting the output
‘"Wrap' (default) | 'Saturate'

Overflow handling for type-casting the output, specified as 'Wrap' or 'Saturate'. The object uses
this property when casting the output to the data type specified by the QutputDataType property.
When the input data type is floating point, the object ignores this property. For more details, see
“Overflow Handling”.

CoefficientsDataType — Data type of filter coefficients
‘Same word length as input' (default) | numerictype object

Data type of filter coefficients, specified as 'Same word length as input' oranumerictype
object. To specify a numerictype object, call numerictype(s,w, f), where:

* sis 1 for signed and 0 for unsigned.
* wis the word length in bits.

* fis the number of fractional bits.

The object casts the filter coefficients to the specified data type. The quantization rounds to the
nearest representable value and saturates on overflow. When the input data type is floating point, the
object ignores this property.

The recommended data type for this parameter is 'Same word length as input'.
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OutputDataType — Data type of filter output
"Full precision' (default) | 'Same word length as input' | numerictype object

Data type of the filter output, specified as 'Same word length as input', 'Full precision’,
or a numerictype object. To specify a numerictype object, call numerictype(s,w, f), where:

* sis 1 for signed and 0 for unsigned.
* wis the word length in bits.
* fis the number of fractional bits.

The object casts the output of the filter to the specified data type. The quantization uses the settings
of the RoundingMethod and OverflowAction properties. When the input data type is floating
point, the object ignores this property.

The object increases the word length for full precision inside each filter tap and casts the final output
to the specified type. The maximum final internal data type (WF) depends on the input data type (WI),
the coefficient data type (WC), and the number of coefficients (L) and is given by

WF = WI + WC + ceil(log2(L)).

Because the coefficient values limit the potential growth, usually the actual full-precision internal
word length is smaller than WF.

Control Arguments

ResetInputPort — Option to enable reset input argument
false (default) | true

Option to enable the reset input argument, specified as true or false. When you set this property
to true, the object expects a value for the reset input argument. The reset signal implements a
local synchronous reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

HDLGlobalReset — Option to connect data path registers to generated HDL global reset
signal
false (default) | true

Option to connect the data path registers to the generated HDL global reset signal, specified as true
or false. Set this property to true to connect the generated HDL global reset signal to the data
path registers. This property does not change the arguments of the object or modify simulation
behavior in MATLAB. When you set this property to false, the generated HDL global reset clears
only the control path registers. The generated HDL global reset can be synchronous or asynchronous
depending on your HDL code generation settings.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.
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Usage

Syntax

[dataOut,validOut]
[dataOut,validOut]

firInterp(datalIn,validIn)
firInterp(datalIn,validIn, reset)

Description

[dataOut,validOut]
validInis true.

firInterp(dataln,validIn) filters the input data only when

[dataOut,validOut] firInterp(datalIn,validIn, reset) filters data when reset is
false. When reset is true, the object resets the filter registers. The object expects the reset
argument only when you set the ResetInputPort property to true.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Input Arguments

dataIn — Input data
real or complex scalar or vector

Input data, specified as a real- or complex-valued scalar or vector. The vector size must be less than
or equal to 64. When the input data type is an integer type or fixed-point type, the object uses fixed-
point arithmetic for internal calculations.

The software supports double and single data types for simulation, but not for HDL code
generation.

Data Types: fi | single | double | int8 | int1l6 | int32 | uint8 | uintl6 | uint32
Complex Number Support: Yes

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is O (false), the object ignores the values
from the dataln argument.

Data Types: logical

reset — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set the ResetInputPort property to true.
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Data Types: logical
Output Arguments

dataOut — Interpolated output data
real or complex scalar or vector

Interpolated output data, returned as a real or complex scalar or vector. The vector size is InputSize *
InterpolationFactor. When NumCycles is greater than InterpolationFactor, scalar output
samples are spaced out with floor (NumCycles/InterpolationFactor) invalid cycles, and the
output valid signal indicates which samples are valid after interpolation.

When the input data is floating point, the output data inherits the data type of the input data. When
the input data is an integer type or fixed-point type, the OutputDataType property specifies the
output data type.

Data Types: fi | single | double | int8 | int1l6 | int32 | uint8 | uintl6 | uint32

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.

Data Types: Llogical

ready — Indicates object is ready for new input data
logical scalar

Control signal that indicates that the object is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the object ignores any input data in the next time step.

Data Types: logical

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsphdl.FIRInterpolator
getLatency Latency of FIR filter

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object
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Algorithms

This System object implements the algorithms described on the FIR Interpolator block reference
page.

Version History
Introduced in R2022a

R2022b: Increased resource sharing for FIR Interpolator

Starting in R2022b, when NumCycles is greater than the filter length, the object interleaves the
coefficients to share multipliers between the polyphase branches. To implement the filter with the
minimum number of multipliers, set NumCycles to Inf.

In R2022a, the minimum number of multipliers that a partly serial FIR interpolator could use was
InterpolationFactor multipliers, which occurred when NumCycles was equal to the filter length.
Increasing NumCycles above the filter length resulted in no additional resource sharing.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The software supports double and single data types for simulation, but not for HDL code
generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also

Objects
dsphdl.FIRDecimator

Blocks
FIR Interpolator | FIR Decimator | Discrete FIR Filter
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dsphdl.BiquadFilter

Package: dsphdl
Biquadratic IIR (SOS) filter

Description

A biquad filter is a form of infinite-impulse response (IIR) filter where the numerator and denominator
are split into a series of second-order sections connected by gain blocks. This type of filter can
replace a large FIR filter that uses an impractical amount of hardware resources. Designs often use
biquad filters as DC blocking filters or to meet a specification originally implemented with an analog
filter, such as a pre-emphasis filter.

To filter input data with an HDL-optimized biquad filter:

1 Create the dsphdl.BiquadFilter object and set its properties.
2  Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

myfilt
myfilt

dsphdl.BiquadFilter
dsphdl.BiquadFilter (Name, Value)

Description

myfilt = dsphdl.BiquadFilter creates an HDL-optimized biquad filter. The default filter is a
direct form II architecture with one section.

myfilt = dsphdl.BiquadFilter(Name,Value) sets properties using one or more name-value
pairs. Enclose each property name in single quotes.

For example:
myfilt = dsphdl.BiquadFilter('Structure','Direct form II transposed', ...
'OutputDataType', 'Custom', ..

'CustomOutputDataType',numerictype(1l,16,14));
[dataOut,validOut] = myfilt(dataIn,validIn);

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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Structure — HDL filter architecture
‘Direct form II' (default)| 'Direct form II transposed' | 'Pipelined feedback
form' | 'Direct form I fully serial'

Both the 'Direct form II' and 'Direct form II transposed' architectures are pipelined
and quantized to fit well into FPGA DSP blocks. The output of these filters matches the output of the
DSP System Toolbox System objects dsp.S0SFilter and dsp.FourthOrderSectionFilter.
These architectures minimize the number of multipliers used by the filter but have a critical path
through the feedback loop and sometimes cannot achieve higher clock rates. These architectures do
not support vector input.

'Pipelined feedback form' implements a pipelined architecture that uses more multipliers than
either direct form II structure, but achieves higher clock rates after synthesis. Vector input is
supported only when you use 'Pipelined feedback form'. The output of the pipelined filter is
slightly different than the DSP System Toolbox functions dsp.S0OSFilter and
dsp.FourthOrderSectionFilter because of the timing of data samples applied in the pipelined
filter stages.

'‘Direct form I fully serial' implements a fully serial architecture that uses only one
multiplier. When you select this option, the object stores the numerator, denominator, and scale
values in the same ROM. You can control the data type of the ROM by using the
CoefficientDataType property. When you select this architecture, the object has an output ready
argument. The ready argument indicates when the object is ready for new input data. Apply input
data only when ready is 1 (true). This architecture does not support vector input.

Numerator — Coefficients of filter numerator
[1,2,1] (default) | NumSections-by-3 matrix

Specify the numerator coefficients as a matrix of NumSections-by-3 values. NumSections is the
number of second-order filter sections. The object infers the number of filter sections from the size of
the numerator and denominator coefficients. The numerator coefficient and denominator coefficient
matrices must be the same size. The default filter has one section.

Denominator — Coefficients of filter denominator
[1,.1,.2] (default) | NumSections-by-3 matrix

Specify the denominator coefficients as a matrix of NumSections-by-3 values. The object assumes the
first denominator coefficient of each section is 1.0.NumSections is the number of second-order filter
sections. The object infers the number of sections from the size of the numerator and denominator
coefficients. The numerator coefficient and denominator coefficient matrices must be the same size.
The default filter has one section.

ScaleValues — Gain values applied before and after second-order filter sections
[1] (default) | vector of 1 to NumSections+1 values

Specify the gain values as a vector of up to NumSections+1 values. NumSections is the number of
second-order filter sections. The object infers the number of sections from the size of the numerator
and denominator coefficients. If the vector has only one value, the object applies that gain before the
first section. If you specify fewer values than there are filter sections, the object sets the remaining
section gain values to one. The diagram shows a 3-section filter and the locations of the four scale
values before and after the sections.
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Implementing these gain factors outside the filter sections reduces the multipliers needed to
implement the numerator of the filter.

Data Types

Rounding — Rounding method for type-casting the output
"Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding mode for type-casting the output and accumulator values to the data types specified by the
OutputDataType and AccumulatorDataType properties. When the input data type is floating
point, the object ignores this parameter. For more details, see “Rounding Modes”.

OverflowAction — Overflow handling for type-casting the output
'"Wrap' (default) | 'Saturate'

Overflow handling for type-casting the output and accumulator values to the data types specified by
the OutputDataType and AccumulatorDataType properties. When the input data type is floating
point, the object ignores the OverflowAction property. For more details, see “Overflow Handling”.

NumeratorDataType — Method to determine data type of numerator coefficients
‘Same word length as first input' (default) | 'Custom’

Data type of numerator coefficients, specified as 'Same word length as first input' or
"Custom’.

The object type-casts the numerator coefficients to the specified data type. The quantization rounds
to the nearest representable value and saturates on overflow. When the input data type is floating
point, the object ignores this property.

The object returns a warning if the data type of the coefficients does not have enough fractional
length to represent the coefficients accurately.

Dependencies

To enable this property, set the Structure property to 'Direct form II', 'Direct form II
transposed', or 'Pipelined feedback form'.

DenominatorDataType — Method to determine data type of denominator coefficients
‘Same word length as first input' (default)| 'Custom’

Data type of denominator coefficients, specified as 'Same word length as first input' or
"Custom’.

The object type-casts the denominator coefficients to the specified data type. The quantization rounds
to the nearest representable value and saturates on overflow. When the input data type is floating
point, the object ignores this property.

The object returns a warning if the data type of the coefficients does not have enough fractional
length to represent the coefficients accurately.
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Dependencies

To enable this property, set the Structure property to 'Direct form II', 'Direct form II
transposed', or 'Pipelined feedback form'.

ScaleValuesDataType — Method to determine data type of section gains
‘Same word length as first input' (default) | ‘Custom'

Data type of the scale values, specified as 'Same word length as first input' or 'Custom'.

The object type-casts the scale values to the specified data type. The quantization rounds to the
nearest representable value and saturates on overflow. When the input data type is floating point, the
object ignores this property.

Dependencies

To enable this property, set the Structure property to 'Direct form II', 'Direct form II
transposed', or 'Pipelined feedback form'.

CoefficientDataType — Method to determine data type of coefficient memory when using
serial architecture
‘Same word length as first input' (default) | ‘Custom'

Data type of the scale values, specified as 'Same word length as first input' or 'Custom'.

The object casts the numerator, denominator, and scale values to this data type and stores them in an
eight-element memory of this word length. The quantization rounds to the nearest representable
value and saturates on overflow. When the input data type is floating point, the object ignores this
property.

Dependencies
To enable this property, set the Structure property to 'Direct form I fully serial'.

AccumulatorDataType — Method to determine data type of accumulator signals within
each section
'Same as first input' (default) | 'Custom'

Data type of accumulator signals within each section (as indicated in the diagrams in the
“Algorithms” on page 1-155 section), specified as 'Same as first input', or 'Custom’'.

The object type-casts the output of the filter to the specified data type. The quantization uses the
settings of the RoundingMethod and OverflowAction properties. When the input data type is
floating point, the object ignores this property.

OutputDataType — Method to determine data type of filter output
‘Same as first input' (default) | 'Full precision' | 'Custom’

Data type of filter output, specified as 'Same as first input', 'Full precision', or
‘Custom’.

The object type-casts the output of the filter to the specified data type. The quantization uses the

settings of the RoundingMethod and OverflowAction properties. When the input data type is
floating point, the object ignores this property.
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CustomNumeratorDataType — Data type of numerator coefficients
numerictype object

Data type of numerator coefficients, specified as a numerictype object. To specify a numerictype
object, call numerictype(s,w, f), where:

* sis 1 for signed and 0 for unsigned.
* wis the word length in bits.
» T is the number of fractional bits.

The object type-casts the numerator coefficients to the specified data type. The quantization rounds
to the nearest representable value and saturates on overflow. When the input data type is floating
point, the object ignores this property.

The object returns a warning if the data type of the coefficients does not have enough fractional
length to represent the coefficients accurately.

Dependencies
This property applies when you set the NumeratorDataType property to 'Custom'.

CustomDenominatorDataType — Data type of denominator coefficients
numerictype object

Data type of denominator coefficients, specified as a numerictype object. To specify a numerictype
object, call numerictype(s,w, f), where:

* sis 1 for signed and 0 for unsigned.
* wis the word length in bits.
« f is the number of fractional bits.

Dependencies
This property applies when you set the DenominatorDataType property to 'Custom’.

CustomScaleValuesDataType — Data type of section gains
numerictype object

Data type of the scale values, specified as 'Same word length as first input' ora
numerictype object. To specify a numerictype object, call numerictype(s,w, f), where:

* s is 1 for signed and 0 for unsigned.
* wis the word length in bits.
» f is the number of fractional bits.

Dependencies
This property applies when you set the ScaleValuesDataType property to 'Custom'.

CustomCoefficientDataType — Data type of coefficient memory when using serial
architecture
numerictype object

Data type of coefficient memory when using serial architecture, specified as a numerictype object.
To specify a numerictype object, call numerictype(s,w, f), where:
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* sis 1 for signed and 0 for unsigned.
* wis the word length in bits.
* f is the number of fractional bits.

The object casts the numerator, denominator, and scale values to this data type and stores them in an
eight-element memory of this word length.

Dependencies
This property applies when you set the CoefficientDataType property to 'Custom'.

CustomAccumulatorDataType — Data type of accumulator signals within each section
numerictype object

Data type of accumulator signals within each section (as indicated in the diagrams in the
“Algorithms” on page 1-155 section), specified as a numerictype object. To specify a numerictype
object, call numerictype(s,w, f), where:

* s is 1 for signed and 0 for unsigned.
* wis the word length in bits.
» f is the number of fractional bits.

Dependencies
This property applies when you set the AccumulatorDataType property to 'Custom'.

CustomOutputDataType — Data type of filter output
numerictype object

Data type of filter output, specified as a numerictype object. To specify a numerictype object, call
numerictype(s,w, f), where:

* sis 1 for signed and 0 for unsigned.
* wis the word length in bits.
* f is the number of fractional bits.

Dependencies

This property applies when you set the QutputDataType property to 'Custom'.
Usage

Syntax

[dataOut,validOut] = myfilt(dataln,validIn)
[dataOut,validOut, ready] = firFilt(dataln,validIn)

Description
[dataOut,validOut] = myfilt(dataln,validIn) filters the input data only when validIn is

true.
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[dataOut,validOut, ready] = firFilt(dataIn,validIn) returns ready setto true when
the object is ready to accept new input data on the next call.

The object returns the ready argument only when you set the Structure property to 'Direct
form I fully serial’.

Input Arguments

dataln — Input data
scalar or column vector of real values

Input data, specified as a scalar or column vector of real values. When the input has an integer or
fixed-point data type, the object uses fixed-point arithmetic for internal calculations.

Vector input is supported only when you set the Structure property to 'Pipelined feedback
form'. The object accepts vectors up to 64 samples, but large vector sizes can make the calculation
of internal data types challenging. Vector sizes of up to 16 samples are practical for hardware
implementation.

When you set the Structure property to 'Direct form I fully serial', the object has an
output ready argument that indicates when the object is ready for new input. You can apply input
data only when the output ready argument is 1 (true). Your design can react to the ready
argument to provide the next input sample, or you can space your input data with enough cycles in
between to process each sample. Use the validOut argument to determine the cycles required to
process one sample.

The software supports double and single data types for simulation, but not for HDL code
generation.
Data Types: fi | single | double |int8 | intl6 | int32 | uint8 | uintl6 | uint32

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validInis 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataln argument.

Data Types: logical
Output Arguments

dataOut — Filtered output data
scalar or column vector of real values

Filtered output data, returned as a scalar or column vector of real values. The output dimensions
match the input dimensions. When the input data is floating point, the output data inherits the data
type of the input data. When the input data is an integer type or fixed-point type, the
OutputDataType property determines the output data type.

Data Types: fi | single | double | int8 | int1l6 | int32 | uint8 | uintl6 | uint32

validOut — Indicates valid output data
scalar
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Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
datalOut argument are not valid.

Data Types: Llogical

ready — Indicates object is ready for new input data
scalar

Control signal that indicates that the object is ready for new input data sample on the next call. When
ready is 1 (true), you can specify the dataln and validIn inputs for the next time step. When
ready is 0 (false), the object ignores any input data in the next time step.

When using the 'Direct form I fully serial' architecture, the object processes one sample at
a time. If your design waits for the object to return ready set to 0 (false) before stopping the
application of input data, then one additional input data value arrives at the object. The object stores
this additional data while processing the current data, and does not set ready to 1 (true) until the
additional input is processed.

Dependencies

To enable this argument, set the Structure property to 'Direct form I fully serial’.

Data Types: logical

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Algorithms

This System object implements the algorithms described on the Biquad Filter block reference page.

Version History
Introduced in R2022a

R2023a: Minimum resource architecture
The object now has the option to set the Structure property to 'Direct form I fully serial'
to implement a fully serial architecture that uses only one multiplier. When you select this option, the

object stores the numerator, denominator, and scale values in the same ROM, and you can control the
data type of the ROM by using the CoefficientDataType property. When you select this
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architecture, the object has an output ready argument that indicates when the object is ready for
new input. You can apply input data only when the output ready argument is 1 (true).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The software supports double and single data types for simulation, but not for HDL code
generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Biquad Filter
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dsphdl.ComplexToMagnitudeAngle

Package: dsphdl

Magnitude and phase angle of complex signal

Description

The dsphdl.ComplexToMagnitudeAngle System object computes the magnitude and phase angle
of a complex signal. It provides hardware-friendly control signals. The System object uses a pipelined
coordinate rotation digital computer (CORDIC) algorithm to achieve an HDL-optimized
implementation.

To compute the magnitude and phase angle of a complex signal:

1 Create the dsphdl.ComplexToMagnitudeAngle object and set its properties.
2 (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

magAngle
magAngle

dsphdl.ComplexToMagnitudeAngle
dsphdl.ComplexToMagnitudeAngle(Name,Value)

Description

magAngle = dsphdl.ComplexToMagnitudeAngle returns a
dsphdl.ComplexToMagnitudeAngle System object, magAngle, that computes the magnitude and
phase angle of a complex input signal.

magAngle = dsphdl.ComplexToMagnitudeAngle(Name,Value) sets properties of magAngle
using one or more name-value pairs. Enclose each property name in single quotes.

Example: magAngle = dsphdl.ComplexToMagnitudeAngle('AngleFormat', 'Radians')

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

OutputValue — Type of values to return
‘Magnitude and angle' (default) | '"Magnitude' | 'Angle’
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Type of output values to return, specified as 'Magnitude and angle', 'Magnitude', or 'Angle’.
You can choose for the object to return the magnitude of the input signal, or the phase angle of the
input signal, or both.

AngleFormat — Format of phase angle output value
"‘Normalized' (default) | 'Radians’

Format of the phase angle output value from the object, specified as:

* 'Normalized' — Fixed-point format that normalizes the angle in the range [-1,1].
* 'Radians' — Fixed-point values in the range [m,—1].

ScaleOutput — Scale output by inverse of CORDIC gain factor
true (default) | false

Scale output by the inverse of the CORDIC gain factor, specified as true or false. The object
implements this gain factor with either CSD logic or a multiplier, according to the ScalingMethod
property.

Note If your design includes a gain factor later in the datapath, you can set ScaleOutput to false,
and include the CORDIC gain factor in the later gain. For calculation of this gain factor, see
“Algorithm” on page 2-170. The object replaces the first CORDIC iteration by mapping the input value
onto the angle range [0,11/4]. Therefore, the initial rotation does not contribute a gain term.

NumIterationsSource — Source of NumIterations
"Auto’ (default) | 'Property'

Source of the NumIterations property for the CORDIC algorithm, specified as:

* 'Auto' — Sets the number of iterations to one less than the input word length. If the input is
double or single, the number of iterations is 16.

* 'Property' — Uses the NumIterations property.
For details of the CORDIC algorithm, see “Algorithm” on page 2-170.

NumIterations — Number of CORDIC iterations
integer less than or equal to one less than the input word length

Number of CORDIC iterations that the object executes, specified as an integer. The number of
iterations must be less than or equal to one less than the input word length.

For details of the CORDIC algorithm, see “Algorithm” on page 2-170.
Dependencies

To enable this property, set NumIterationsSource to 'Property’.

ScalingMethod — Implementation of CORDIC gain scaling
'CSD' (default) | '"Multipliers'

When you set this property to 'CSD"', the object implements the CORDIC gain scaling by using a
shift-and-add architecture for the multiply operation. This implementation uses no multiplier
resources and may increase the length of the critical path in your design. When you set this property
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to 'Multipliers’, the object implements the CORDIC gain scaling with a multiplier and increases
the latency of the object by four cycles.

Dependencies

To enable this property, set the ScaleOutput property to true.
Usage

Syntax

[mag,angle,validOut] = magAngle(X,validIn)
[mag,validOut] = magAngle(X,validIn)
[angle,validOut] = magAngle(X,validIn)

Description

[mag,angle,validOut] = magAngle(X,validIn) converts a scalar or vector of complex values
X into their component magnitude and phase angles. validIn and validOut are logical scalars that
indicate the validity of the input and output signals, respectively.

[mag,validOut] = magAngle(X,validIn) returns only the component magnitudes of X.

To use this syntax, set OutputValue to 'Magnitude’.
Example: magAngle = dsphdl.ComplextoMagnitudeAngle('OutputValue', 'Magnitude');

[angle,validOut] = magAngle(X,validIn) returns only the component phase angles of X.

To use this syntax, set OutputValue to 'Angle’.
Example: magAngle = dsphdl.ComplextoMagnitudeAngle('OutputValue', 'Angle');

Input Arguments

X — Input signal
complex scalar or vector

Input signal, specified as a scalar, a column vector representing samples in time, or a row vector
representing channels. Using vector input increases data throughput while using more hardware
resources. The object implements the conversion logic in parallel for each element of the vector. The
input vector can contain up to 64 elements.

The software supports double and single data types for simulation, but not for HDL code
generation.

Data Types: fi | int8 | intl6 | int32 | uint8 | uint16 | uint32 | single | double

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataln argument.

Data Types: logical
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Output Arguments

mag — Magnitude component of input signal
scalar | vector

Magnitude calculated from the complex input signal, returned as a scalar, a column vector
representing samples in time, or a row vector representing channels. The dimensions and data type
of this argument match the dimensions of the dataln argument.

Dependencies

To enable this argument, set the OutputValue property to 'Magnitude and Angle' or
'Magnitude'.

angle — Phase angle component of input signal
scalar | vector

Angle calculated from the complex input signal, returned as a scalar, a column vector representing
samples in time, or a row vector representing channels. The dimensions and data type of this
argument match the dimensions of the dataln argument. The format of this value depends on the
AngleFormat property.

Dependencies
To enable this argument, set the OutputValue property to 'Magnitude and Angle' or 'Angle’.

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the mag and/or angle arguments. When validOut is 0 (false), values from
the mag and/or angle arguments are not valid.

Data Types: logical

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Compute Magnitude and Phase Angle of Complex Signal

Use the dsphdl.ComplextoMagnitudeAngle object to compute the magnitude and phase angle of
a complex signal. The object uses a CORDIC algorithm for an efficient hardware implementation.
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Choose word lengths and create random complex input signal. Then, convert the input signal to fixed-
point.

a -
b 4;
inputWL = 16;
inputFL = 12;
numSamples = 10;

’

reData = ((b-a).*rand(numSamples,1l)+a);

imData = ((b-a).*rand(numSamples,l)+a);

dataln = (fi(reData+imData*1i,1,inputWL,inputFL));
figure

plot(dataln)

title('Random Complex Input Data')
xlabel('Real')
ylabel('Imaginary")

Random Complex Input Data
-'-1- T T T T T

Imaginary

Real

Write a function that creates and calls the System object™. You can generate HDL from this function.

function [mag,angle,validOut] = Complex2MagAngle(yIn,validIn)
%sComplex2MagAngle

Converts one sample of complex data to magnitude and angle data.
yIn is a fixed-point complex number.

validIn is a logical scalar value.

You can generate HDL code from this function.

0° o° o° o°

persistent cma;
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if isempty(cma)
cma = dsphdl.ComplexToMagnitudeAngle('AngleFormat', 'Radians');
end
[mag,angle,validOut] = cma(yIn,validIn);
end

The number of CORDIC iterations determines the latency that the object takes to compute the answer
for each input sample. The latency is NumIterations+4. In this example, NumIterationsSource
is set to the default, 'Auto’, so the object uses inputWL-1 iterations. The latency is inputWL+3.

latency = inputWL+3;

mag = zeros(1l,numSamples+latency);

ang = zeros(1l,numSamples+latency);
validOut = false(1l,numSamples+latency);

Call the function to convert each sample. After you apply all input samples, continue calling the
function with invalid input to flush remaining output samples.

for ii = 1l:1:numSamples

[mag(ii),ang(ii),validOut] = Complex2MagAngle(dataIn(ii),true);
end
for ii = (numSamples+1):1:(numSamples+latency)

[mag(ii),ang(ii),validOut(ii)] = Complex2MagAngle(fi(0+0*1i,1,inputWL,inputFL), false);
end
% Remove invalid output values
mag = mag(validOut == 1)
ang = ang(validOut == 1)
figure
polar(ang,mag,'--r") % Red is output from System object
title('Output from dsphdl.ComplexToMagnitudeAngle')

’
’

magD abs(dataln);
angle(dataln);

polar(angD,magD, '--b') % Blue is output from abs and angle functions
title('Output from abs and angle Functions')
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Output from dsphdl.ComplexToMagnitudeAngle
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Output from abs and angle Functions
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Algorithms
CORDIC Algorithm

The CORDIC algorithm is a hardware-friendly method for performing trigonometric functions. It is an
iterative algorithm that approximates the solution by converging toward the ideal point. The object
uses CORDIC vectoring mode to iteratively rotate the input onto the real axis.

The Givens method for rotating a complex number x+iy by an angle 0 is as follows. The direction of
rotation, d, is +1 for counterclockwise and —1 for clockwise.

Xy = xcosO — dysinf
Yy = ycosh + dxsinf
For a hardware implementation, factor out the cos6 to leave a tanf term.
Xr = cosO(x — dytand)
Vr = cosO(y + dxtanb)

To rotate the vector onto the real axis, choose a series of rotations of 8, so that tanf,, = 2~". Remove
the cosf term so each iterative rotation uses only shift and add operations.

Rxp =Xp -1 —dpyn - 12—n

Ryn=Yn—1+dpxn-127"
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Combine the missing cosf terms from each iteration into a constant, and apply it with a single
multiplier to the result of the final rotation. The output magnitude is the scaled final value of x. The
output angle, z, is the sum of the rotation angles.

Xr = (c0osBpcosh...cos0,)Rxn

2= dpby
0

Modified CORDIC Algorithm

The convergence region for the standard CORDIC rotation is =+99.7°. To work around this limitation,
before doing any rotation, the object maps the input into the [0,11/4] range using the following
algorithm.

if abs(x) > abs(y)

input mapped = [abs(x), abs(y)l;
else

input mapped = [abs(y), abs(x)];
end

At each iteration, the object rotates the vector towards the real axis. The rotation is counterclockwise
when y is negative, and clockwise when y is positive.

Quadrant mapping saves hardware resources and reduces latency by reducing the number of
CORDIC pipeline stages by one. The CORDIC gain factor, Kn, therefore does not include the n=0, or
cos(1/4) term.

K, = cos,...cos0;, = c0s(26.565) - cos(14.036) - cos(7.125) - cos(3.576)

After the CORDIC iterations are complete, the object corrects the angle back to its original location.
First it adjusts the angle to the correct side of /4.

if abs(x) > abs(y)

angle_unmapped = CORDIC out;
else

angle _unmapped = (pi/2) - CORDIC out;
end

Then it flips the angle to the original quadrant.

if (x < 0)
if (y < 0)
output _angle = - pi + angle unmapped;e
else
output _angle = pi - angle_unmapped;
else
if (y<0)

output _angle -angle_unmapped;
Architecture
The object generates a pipelined HDL architecture to maximize throughput. Each CORDIC iteration is

done in one pipeline stage. The gain multiplier, if enabled, is implemented with Canonical Signed
Digit (CSD) logic.
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If you use vector input, this object replicates this architecture in parallel for each element of the
vector.

”

D_ K, _D_,rz

)

Quadrant _D__. Iy

Correction

Xo »
Quadrant
Mapper

CORDIC 2

Yo > CORDIC 1

Zn

Input Word Length Output Magnitude Word Length

fixdt(0,WL,FL) fixdt(0,WL+2,FL)

fixdt(1,WL,FL) fixdt(1,WL+1,FL)

Input Word Length Output Angle Word Length

fixdt([ ], WL,FL) Radians fixdt(1,WL+3,WL)
Normalized fixdt(1,WL+3,WL+2)

The CORDIC logic at each pipeline stage implements one iteration. For each pipeline stage, the shift
and angle rotation are constants.
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Xi Xi+1
+ /- >
* Shift x|
¥ Shift == ] . Visq
y[, _? + II.r - >

g8 LUT

Cirection

Cecision

When you set OutputValue to 'Magnitude', the object does not generate HDL code for the angle
accumulation and quadrant correction logic.

Normalized Angle Format

This format normalizes the fixed-point radian angle values around the unit circle. This is a more
efficient use of bits than a range of [0,2n] radians. Normalized angle format also enables wraparound
at 0/2n without additional detect and correct logic.

For example, representing the angle with 3 bits results in the following normalized values.
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Using the mapping described in “Modified CORDIC Algorithm” on page 1-145, the object normalizes
the angles across [0,11/4] and maps them to the correct octant at the end of the calculation.

Delay

The latency is NumIterations + 4 cycles from input to output. Each call to the object models one
clock cycle.

When you set NumIterationsSource to 'Auto’, the number of iterations is one less than the input
word length and the latency is three more than the input word length. If the data type of the input is
double or single, the number of iterations is 16 and the latency is 20.

Note When you set the ScalingMethod property to 'Multipliers’, the object latency increases
by four cycles.

Performance

Performance was measured for the default configuration, with output scaling disabled and
fixdt(1,16,12) input. When the generated HDL code is synthesized into a Xilinx ZC706

(XC7Z045FFG900-2) FPGA, the design achieves 350 MHz clock frequency. It uses the following

resources.

Resource Number Used
LUT 891

FFS 899

Xilinx LogiCORE DSP48 0

Block RAM (16K) 0

Critical path 2.792 ns

When you use a multiplier for the CORDIC gain scaling, the design uses one DSP block and has a
shorter critical path. The critical path difference is not significant at this number of bits, but as the
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size of the data increases, the critical path of the CSD implementation rises faster than the critical

path of the multiplier.

Resource Number Used
LUT 808

FFS 956

Xilinx LogiCORE DSP48 1

Block RAM (16K) 0

Critical path 2.574 ns

Performance of the synthesized HDL code varies depending on your target and synthesis options.
When you use vector input, the resource usage is about VectorSize times the scalar resource usage.

Version History
Introduced in R2014b

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this System object was named dsp.HDLComplexToMagnitudeAngle and was part
of the DSP System Toolbox product.

R2022a: Option to use multiplier for scale factor

In previous releases, the System object implemented the CORDIC gain for hardware by using shift-
and-add logic. To use a multiplier, set the ScalingMethod property to 'Multipliers'. To use shift-
and-add logic, set this property to 'CSD"'.

R2021b: High-throughput interface

The System object accepts and returns a column vector of elements that represent samples in time.
The input vector can contain up to 64 samples.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The software supports double and single data types for simulation, but not for HDL code
generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).
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See Also

Blocks
Complex to Magnitude-Angle

Functions
cordicangle | cordiccart2pol | cordicabs | angle
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dsphdl.FIRRateConverter

Package: dsphdl

Upsample, filter, and downsample input signal

Description

The dsphdl.FIRRateConverter System object upsamples, filters, and downsamples input signals.
It is optimized for HDL code generation and operates on one sample of each channel at a time. The
object implements an efficient polyphase architecture to avoid unnecessary arithmetic operations and
high intermediate sample rates.

*x[k] FIR Filter vin]

The object upsamples by an integer factor of L, applies an FIR filter, and downsamples by an integer
factor of M.

To resample and filter input data:

1 Create the dsphdl.FIRRateConverter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

HDLFIRRC = dsphdl.FIRRateConverter

HDLFIRRC = dsphdl.FIRRateConverter(L,M, num)
HDLFIRRC = dsphdl.FIRRateConverter( _ ,Name,bValue)
Description

HDLFIRRC = dsphdl.FIRRateConverter returns a System object, HDLFIRRC, that resamples
each channel of the input. The object upsamples by an integer factor of L, applies an FIR filter, and
downsamples by an integer factor of M. The default L/M is 3/2.

HDLFIRRC = dsphdl.FIRRateConverter(L,M,num) setsthe InterpolationFactor property
to L, the DecimationFactor property to M, and the Numerator property to num.
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HDLFIRRC = dsphdl.FIRRateConverter( _ ,Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in single quotes. For example:

HDLFIRRC = dsphdl.FIRRateConverter(L,M,Num, 'ReadyPort',true);

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

InterpolationFactor — Upsampling factor
3 (default) | positive integer scalar

Upsampling factor, L, specified as a positive integer.

DecimationFactor — Downsampling factor
2 (default) | positive integer scalar

Downsampling factor, M, specified as a positive integer scalar.

Numerator — FIR filter coefficients
firpm(70,[0 .28 .32 1],[1 1 0 0]) (default) | vector in descending powers of 2

FIR filter coefficients, specified as a vector in descending powers of 2.

You can generate filter coefficients by using the Signal Processing Toolbox filter design functions,
such as firl. Design a lowpass filter with normalized cutoff frequency no greater than
min(1/L,1/M). The object initializes internal filter states to zero.

ReadyPort — Enable ready argument
false (default) | true

Enable ready output argument of the object. When enabled, the object returns a logical scalar value,
ready, when you call the object. When ready is 1 (true), the object is ready for a new input sample
the next time you call it.

RoundingMethod — Rounding mode used for fixed-point operations
"Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding mode used for fixed-point operations. This property does not apply when the input is
single or double type. 'Simplest' mode is not supported.

OverflowAction — Overflow mode used for fixed-point operations
‘"Wrap' (default) | 'Saturate'

Overflow mode used for fixed-point operations. This property does not apply when the input is
single or double type.

CoefficientsDataType — Data type of the FIR filter coefficients
numerictype(1l,16,16) (default) | numerictype(s,wl, fl)
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Data type of the FIR filter coefficients, specified as a numerictype(s,wl, fl) object with
signedness, word length, and fractional length properties.

OutputDataType — Data type of the output data samples
‘Same word length as input' (default) | numerictype(s,wl,fl) | 'Full precision'

Data type of the output data samples, specified as 'Same word length as input’, 'Full
precision', or as a numerictype(s,wl, fl) object with signedness, word length, and
fractional length properties.

Usage

Syntax

[dataOut,validOut] = HDLFIRRC(datalIn,validIn)
[dataOut,validOut, ready] = HDLFIRRC(dataIn,validIn)

Description

[datalOut,validOut] = HDLFIRRC(dataIn,validIn) resamples dataln according to the
InterpolationFactor (L) and DecimationFactor (M) properties. To avoid dropped samples
when using this syntax, apply new valid input samples, with validIn set to true, only every
ceil(L/M) calls to the object. The object sets validOut to true when dataOut is a new valid
sample.

[dataOut,validOut, ready] = HDLFIRRC(dataIn,validIn) resamples the input data and
returns ready to indicate whether the object can accept a new sample on the next call.

This syntax applies when you set the ReadyPort property to true. For example:
HDLFIRRC = dsphdl.FIRRateConverter(..., 'ReadyPort', true);

i&étaOut ,validOut, ready] = rateConverter(datalIn,validIn);

Input Arguments

dataln — Data input
scalar or row vector

Data input, specified as a scalar, or as a row vector where each element represents an independent
channel.

The software supports double and single data types for simulation, but not for HDL code
generation.
Data Types: fi | int8 | int1l6 | int32 | int64 | uint8 | uintl6 | uint32 | single | double

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures

the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataln argument.
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You can apply a valid data sample every ceil(L/M) calls to the object. You can use the optional
ready output signal to indicate when the object can accept a new sample.

Data Types: logical
Output Arguments

dataOut — Resampled and filtered data sample
scalar or row vector

Resampled and filtered data sample, returned as a scalar, or as a vector in which each element
represents an independent channel.

The software supports double and single data types for simulation, but not for HDL code
generation.

Data Types: fi | int8 | intl6 | int32 | int64 | uint8 | uint16 | uint32 | single | double

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validQut is 0 (false), values from the
dataOut argument are not valid.

Data Types: logical

ready — Indicates object is ready for new input data
scalar

Control signal that indicates that the object is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the object ignores any input data in the next time step.

Dependencies

To enable this argument, set the ReadyPort property to true.

Data Types: logical

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples
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Downsample Signal
Convert a signal from 48 kHz to 32 kHz by using the dsphdl.FIRRateConverter System object™.

Define the sample rate and length of the input signal, and a 2 kHz cosine waveform. Set validIn =
true for every sample.

F 48e3;

N 100;

t = (0:Ns-1).'/Fs;
dataln = cos(2*pi*2e3*t);
validIn = true(Ns,1);

S
S

Preallocate dataOut and validOut signals for faster simulation.

dataOut = zeros(Ns,1);
validOut = false(Ns,1);

Create the System object. Configure it to perform rate conversion by a factor of 2/3, using an
equiripple filter.

Numerator = firpm(70,[0 0.25 0.32 1],[1 1 0 0]);
firrc = dsphdl.FIRRateConverter(2,3,Numerator);

Call the System object to perform the rate conversion and obtain each output sample.

for k = 1:Ns
[dataOut(k),validOut(k)] = firrc(dataIn(k),validIn(k));
end

Because the input sample rate is higher than the output sample rate, not every member of dataOut
is valid. Use validOut to extract the valid samples from dataOut.

y = dataOut(validOut);
View the input and output signals with the Logic Analyzer.

la = dsp.LogicAnalyzer('NumInputPorts',4, 'SampleTime',1/Fs, 'TimeSpan',Ns/Fs);
modifyDisplayChannel(1la,1l, 'Name', 'dataIn', 'Format', 'Analog', 'Height',8)
modifyDisplayChannel(la,2, 'Name', 'validIn')
modifyDisplayChannel(1la,3, 'Name', 'dataOut', 'Format', 'Analog', 'Height',8)
modifyDisplayChannel(1la,4, 'Name', 'validOut")
la(dataln,validIn,dataOut,validOut)
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Cursor 1

Upsample Signal

Convert a signal from 40 MHz to 100 MHz by using the dsphdl.FIRRateConverter System
object™. To avoid overrunning the object as the signal is upsampled, control the input rate manually.

Define the sample rate and length of the input signal, and a fixed-point cosine waveform.

Fs = 40e6;

Ns = 50;

t = (0:Ns-1).'/Fs;

x = fi(cos(2*pi*1.2e6*t),1,16,14);

Define the rate conversion parameters. Use an interpolation factor of 5 and a decimation factor of 2.
Calculate how often the object can accept a new input sample.

L

5 .
M=2

’
’
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stepsPerInput = ceil(L/M);
numSteps = stepsPerInput*Ns;

Generate datalIn and validIn based on how often the object can accept a new sample.

dataln = zeros(numSteps,1, 'like',x);
dataIn(l:stepsPerInput:end) = x;
validIn = false(numSteps,1);
validIn(1l:stepsPerInput:end) = true;

Create the System object. Configure it to perform rate conversion using the specified factors and an
equiripple FIR filter.

Numerator = firpm(70,[0 0.15 0.25 1],[1 1 0 0]);
rateConverter = dsphdl.FIRRateConverter(L,M,Numerator);

Create a Logic Analyzer to capture and view the input and output signals.

la = dsp.LogicAnalyzer('NumInputPorts',4, 'SampleTime',1/Fs, 'TimeSpan',numSteps/Fs);
modifyDisplayChannel(la,l, 'Name', 'datalIn', 'Format', 'Analog', 'Height',8)
modifyDisplayChannel(la,2, 'Name', 'validIn')

modifyDisplayChannel(1la,3, 'Name', 'dataOut', 'Format', 'Analog', 'Height',8)
modifyDisplayChannel(1la,4, 'Name', 'validOut")

Call the System object to perform the rate conversion and obtain each output sample. Call the Logic
Analyzer to add each sample to the waveform display.

for k = l:numSteps
[dataOut,validOut] = rateConverter(dataIn(k),validIn(k));
la(dataIn(k),validIn(k),6dataOut,validOut)

end
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Control Input Rate When Upsampling

Convert a signal from 40 MHz to 100 MHz by using the dsphdl.FIRRateConverter System
object™. Use the optional ready output signal to avoid overrunning the object as the data is
upsampled. The ready signal indicates the object can accept a new data sample on the next call to
the object.

Define the sample rate and length of the input signal, and a fixed-point cosine waveform. Create a
SignalSource object to provide data samples on demand.

40e6;

50;

= (0:Ns-1).'/Fs;

x = fi(cos(2*pi*1l.2e6*t),1,16,14);
inputSource = dsp.SignalSource(x);

Fs
Ns
t

Define the rate conversion parameters. Use an interpolation factor of 5 and a decimation factor of 2.
Determine the number of calls to the object needed to convert Ns samples.
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5
2

S =

umSteps = floor(Ns*L/M);

Create the FIR rate converter System object. Configure it to perform rate conversion using the
specified factors and an equiripple FIR filter. Enable the optional ready output port.

Numerator = firpm(70,[0 0.15 0.25 1],[1 1 0 0]);
rateConverter = dsphdl.FIRRateConverter(L,M,Numerator, 'ReadyPort', true);

Create a Logic Analyzer to capture and view the input and output signals.

la = dsp.LogicAnalyzer('NumInputPorts',5, 'SampleTime',1/Fs, 'TimeSpan',numSteps/Fs);
modifyDisplayChannel(la,l, 'Name', 'dataln', 'Format', 'Analog', 'Height',8)
modifyDisplayChannel(la,2, 'Name', 'validIn')
modifyDisplayChannel(1la,3, 'Name', 'dataOut', 'Format', 'Analog', 'Height',8)
modifyDisplayChannel(1la,4, 'Name', 'validOut")
modifyDisplayChannel(la,5, 'Name', 'ready")

Initialize the ready signal. The object is always ready for input data on the first call.
ready = true;

Call the System object to perform the rate conversion and obtain each output sample. Apply a new
input sample when the object indicates it is ready. Otherwise, set validIn to false.

for k = 1l:numSteps
if ready
dataIn = inputSource();
end
validIn = ready;
[dataOut,validOut, ready] = rateConverter(dataln,validIn);
la(dataln,validIn,dataOut,validOut, ready)
end
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Design for HDL Code Generation from FIR Rate Converter

Create a rate conversion function targeted for HDL code generation, and a test bench to exercise it.
The function converts a signal from 40 MHz to 100 MHz. To avoid overrunning the object, the test
bench manually controls the input rate.

Define the sample rate and length of the input signal, and a fixed-point cosine waveform.

40e6;

50;

(0:Ns-1).'/Fs;
fi(cos(2*pi*l.2e6*t), 1, 16, 14);

Fs
Ns
t
X

Define the rate conversion parameters. Use an interpolation factor of 5 and a decimation factor of 2.
Calculate how often the object can accept a new data sample.

L

5;
M =2

’
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stepsPerInput = ceil(L/M);
numSteps = stepsPerInput*Ns;

Generate datalIn and validIn based on how often the object can accept a new sample.

dataln = zeros(numSteps,1, 'like',x);
dataIn(l:stepsPerInput:end) = x;
validIn = false(numSteps,1);
validIn(1l:stepsPerInput:end) = true;

Create a Logic Analyzer to capture and view the input and output signals.

la = dsp.LogicAnalyzer('NumInputPorts',4, 'SampleTime',1/Fs, 'TimeSpan',numSteps/Fs);
modifyDisplayChannel(la,l, 'Name', 'dataln', 'Format', 'Analog', 'Height',8)
modifyDisplayChannel(la,2, 'Name', 'validIn')
modifyDisplayChannel(1la,3, 'Name', 'dataOut', 'Format', 'Analog', 'Height',8)
modifyDisplayChannel(1la,4, 'Name', 'validOut")

Write a function that creates and calls the System object.

function [dataOut,validOut] = HDLFIRRC5 2(dataIn,validIn)

%HDLFIRRC5 2

% Processes one sample of data using the dsphdl.FIRRateConverter System

% object. dataIn is a fixed-point scalar value. validIn is a logical scalar value.
% You can generate HDL code from this function.

persistent firrc5 2;
if isempty(firrc5_2)
Numerator = firpm(70,[0,.15,.25,1],[1,1,0,0]);
firrc5 2 = dsphdl.FIRRateConverter(5,2,Numerator);
end
[datalOut,validOut] = firrc5 2(dataIn,validIn);
end

Resample the signal by calling the function for each data sample.

for k = l:numSteps
[datalOut,validOut] = HDLFIRRC5 2(dataIn(k),validIn(k));
la(dataIn(k),validIn(k),dataOut,validOut)

end
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Algorithms
This object implements the algorithms described on the FIR Rate Converter block reference page.
Flow Control

The object accepts and returns control signal arguments for pacing the flow of samples. By default,
the object uses validIn and validOut control signals. You can also enable a ready output signal.

The ready output indicates that the object can accept a new input data sample on the next call to the
object. When L = M, you can use the ready argument to achieve continuous output data samples. If
you apply a new input sample after each time object returns ready = true, each call to the object
returns a data output sample with validOut = true.

When you do not enable the ready argument, you can apply a valid data sample only every
ceil(L/M) calls to the object. For example:

* L/M = 4/5 — You can apply a new input sample on every call.
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* L/M = 3/2 — You can apply a new input sample on every other call.

Version History
Introduced in R2015b

R2022a: Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this object was named dsp.HDLFIRRateConverter and was part of the DSP System
Toolbox product.

R2022a: Remove request argument
Behavior changed in R2022a

In previous releases, the object provided an optional request argument. This argument is no longer
available.

R2022a: Synchronous ready signal
Behavior changed in R2022a

The ready signal is now pipelined at the output of the object. In previous releases, the ready output
signal was direct feedthrough without an output pipeline register.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The software supports double and single data types for simulation, but not for HDL code
generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also

Blocks
FIR Rate Converter

Objects
dsp.FIRRateConverter
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dsphdl.Downsampler

Package: dsphdl

Downsample by removing data samples between input samples

Description

The dsphdl.Downsampler System object downsamples an input signal by removing K-1 data
samples between input samples, where K is the downsampling factor. The System object supports
these combinations of input and output data.

* Scalar input and scalar output
* Vector input and scalar output
* Vector input and vector output

The System object provides an architecture suitable for HDL code generation and hardware
deployment.

To downsample input data with a downsampler, follow these steps:

1 Create the dsphdl.Downsampler object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

downsample = dsphdl.Downsampler

downsample = dsphdl.Downsampler(Name,Value)
Description

downsample = dsphdl.Downsampler creates an HDL-optimized upsampler System object with
default property values.

downsample = dsphdl.Downsampler(Name,Value) sets property values using one or more
name-value arguments. Enclose each property name in single quotes.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

DownsampleFactor — Downsampling factor
2 (default) | integer in the range [1, 2.716]

Downsampling factor specified as an integer in the range [1, 2.7 16]. This value gives the rate by
which the System object decreases the input sampling rate.

SampleOffset — Sample offset
0 (default) | integer in the range [0, 2.716 - 1]

Sample offset, specified as an integer in the range [0, DownsampleFactor - 1].

ResetInputPort — Option to enable Reset argument
false or O (default) | true or 1

Option to enable the ready output argument, specified as a numeric or logical 1 (true) or 0 (false)
Usage

Syntax

[dataOut,validOut]
[dataOut,validOut]

downsampler(dataln,validIn)
downsampler(dataln,validIn, reset)

Description

[dataOut,validOut] downsampler(dataIn,validIn) downsamples the input datalIn using
a downsampling factor only when validInis true.

[dataOut,validOut] = downsampler(dataln,validIn, reset) downsamples the input data
when reset is false and clears the filter internal states when reset is true. The System object
expects the reset argument only when you set the ResetInputPort property to true.

Input Arguments

dataIn — Input data
scalar | column vector

Input data, specified as a scalar or a column vector with a length up to 64. The input data must be an
integer or a fixed-point value with a word length less than or equal to 128.. The DownsampleFactor
property must be an integer multiple of the input frame size.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi

validIn — Valid input data indicator
true or 1| false or 0

Valid input data indicator, specified as a numeric or logical 1 (true) or 0 (false). When validInis 1
(true), the object captures the values from the dataIn argument. When validInis 0 (false), the
object ignores the values from the dataIn argument.

Data Types: logical
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reset — Option to clears internal states
true or 1| false or 0

Option to clear the internal states, specified as a numeric or logical 1 (true) or 0 (false). When reset
is 1 (true), the object stops the current calculation and clears the internal states. When reset is 0
(false) and validis 1 (true), the object captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set the ResetInputPort property to true.

Data Types: logical
Output Arguments

dataOut — Downsampled data
scalar | column vector

Downsampled data, returned as a scalar or a column vector with a length from 1 to 64.

For a vector input, if the vector size is less than or equal to DownsampleFactor, the object outputs
scalar output.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi

validOut — Valid output data indicator
true or 1| false or 0

Valid output data indicator, returned as a logical 0 or 1. A value of 1 indicates that the object returns
valid data in the dataOut argument. A value of 0 indicates that values in the dataOut argument are
not valid.

Data Types: logical

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsphdl.Downsampler

getLatency Latency of downsampler

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object
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Examples

Create Downsampler for HDL Code Generation

This example shows how to use a dsphdl.Downsampler to downsample data. You can generate HDL
code for this object.

Generate Frames of Random Input Samples

Set up workspace variables for the object to use. The object supports scalar and vector inputs. For
vector inputs, the input data must be a column vector of size 1 to 64 and K must be an integer
multiple of the input frame size.

K
0

8;
5;

Downsample factor
Sample offset

%
%

scalar = true;
if scalar
vecSize =
value = 1;
else
vecSize = 16; %#ok % Vector size must be a multiple or factor of K
value = vecSize/K;

1;

end

numFrames = 1;
dataSamples = cell(1l,numFrames);
framesize = zeros(1l,numFrames);

refOutput = [1;
WL = 0; % Word length
FL = 0; % Fraction length

Generate Reference Output from MATLAB function

Generate frames of random input samples and apply to the downsample function. You can use the
output that this function generates as a reference against which to compare the output of the System
object.

totalsamples = 0;

for i = 1l:numFrames
framesize(i) = randi([5 200],1,1)*vecSize;
dataSamples{i} = fi(randn(vecSize, framesize(i)),1,16,8);
ref downsample= downsample((dataSamples{i}(:)),K,0);
refOutput = [refOutput, ref downsample]; S#ok

end

Run Function Containing System Object

This example uses the HDLDownsample function for scalar and vector inputs. Set the properties of
the System object in this function to match the input data properties.

function [datalOut,validOut] = HDLDownsample(dataIn,validIn)
persistent hdlDSObj
if isempty(hd1lDSO0bj)
hd1DS0Obj = dsphdl.Downsampler('DownsampleFactor',8, 'SampleOffset',5);
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end
[dataOut,validOut] = hd1DSObj(dataln,validIn);
end

Insert the required number of idle cycles after each frame using the latency variable to avoid
invalid output data.

latency 2+0;
dataOut zeros(value,totalsamples+numFrames*latency);
validOut = zeros(1l,totalsamples+numFrames*latency);
idx=0;
for ij = l:numFrames
for ii = l:size(dataSamples{ij},2)
idx = idx+1;
[dataOut(:,idx),validOut(idx)]
dataSamples{ij}(:,ii),
true);

HDLDownsample(

end
for ii = 1l:latency
idx = idx+1;
[dataOut(:,idx),validOut(idx)]
fi(zeros(vecSize,1),1,16,8),
false);

HDLDownsample(
end
end
Compare Function Output with Reference Output
Compare the output of the HDL function with the output of the downsample function.

HDLOutput
HDLOutput

datalOut(:,validOut==1);
HDLOutput(:);

fprintf('\n Downsampler\n');

difference = (abs(HDLOutput-refOutput(l:length(HDLOutput)))=>0);

fprintf(['\nTotal number of samples differed between Behavioral '
"and HDL simulation: %d \n'],sum(difference));

Downsampler

Total number of samples differed between Behavioral and HDL simulation: 0

Explore Latency of Downsampler Object

The latency of the dsphdl.Downsampler System object™ varies according the downsample factor
and the input vector size. Use the getLatency function to find the latency of an downsampler
configuration. The latency is the number of cycles between the first valid input and the first valid
output, assuming the input is continuously valid.

Create a dsphdl.Downsampler System object and get the latency. The default System object has an
downsampling factor of 2 and a sample offset of 0.

downsampler = dsphdl.Downsampler
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downsampler =
dsphdl.Downsampler with properties:

DownsampleFactor: 2
SampleOffset: 0

Show all properties

vV =1;
downsampler.SampleOffset = 1;
Ydefault = getlLatency(downsampler,V)

Ydefault = 3

Modify the object and check the resulting change in latency.

downsampler.DownsampleFactor = 8;
Y1 = getLatency(downsampler)

Y1 =1

Change the vector input size to 2. Check the resulting change in latency.
V = 4;

downsampler.DownsampleFactor = 2;

Vec = getlLatency(downsampler,V)

Vec = 2

Algorithms
Latency

The latency of the System object changes according to the length of the input. The latency of the
System object is 1 when you set the DownsampleFactor property to 1. Vis the length of the input
and O is the sample offset. This table shows the latency of the System object.

Input Data Output Data |Latency in Clock Cycles
Scalar Scalar 2+ 0

Vector Scalar 1 + floor(0O/V)

Vector Vector 2

Scalar Input

This figure shows the output of the System object with the default configuration, when you set the
DownsampleFactor and SampleOffset property values to 2 and 0. The latency of the System
object is two clock cycles and is calculated as 2 + O, where O is the sample offset.
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Clock
Input Signals
»data
—  valid
Output Signals

»data
—  valid

Cursor 1
Cursor2| 200s

This figure shows the output of the System object when you set the DownsampleFactor property
value to 8 and the SampleOffset property value to 1. The latency of the System object is three clock
cycles.

Clock
Input Signals
- daia
—  valid
Output Signals
»data
—  wvalid

Cursor 1
Cursor2| 300s

Vector Input

This figure shows the output of the System object for a two-element column vector input with the
default configuration, when you set the DownsampleFactor and SampleOffset property values to
2 and 0, respectively. The latency of the System object is one clock cycle.

Clock
Input Signals
»-data
—  valid
Output Signals
»data
—  valid

Cursor 1
Cursor2| 100s

This figure shows the output of the System object for an eight-element column vector input when you
set the DownsampleFactor property value to 4 and the SampleOffset property value to 1. The
latency of the System object is two clock cycles.
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Clock
Input Signals
daia
—  wvalid
Output Signals

- data
—  valid

Cursor 1 B
Cursor2| 200s

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. The
performance also varies based on the input data type.

This table shows the resource and performance data synthesis results of the System object for a
scalar input and for a 16-element column vector input of type fixdt(1,16,0) when you set the
DownsampleFactor and SampleOffset property values to 8 and 0, respectively. The generated
HDL is targeted to the Xilinx Zynq- 7000 ZC706 Evaluation Board.

Input Data Slice LUTs Slice Registers Maximum Frequency in MHz
Scalar 14 37 985.58
Vector 18 66 972.66

The resources and frequencies vary based on the type of input data and the value of
DownsampleFactor as well as other property values you select in the System object. Using a vector
input can increase the throughput, however, doing so also increases the number of hardware
resources that the System object uses.

Version History
Introduced in R2022b
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The software supports double and single data types for simulation, but not for HDL code
generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).
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See Also

Blocks
Upsampler | Downsampler

Objects
dsphdl.Upsampler
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dsphdl.Upsampler

Package: dsphdl

Upsample by adding zeros between input samples

Description

The dsphdl.Upsampler System object upsamples an input signal by adding L-1 zeros between
input samples, where L is the upsampling factor. The System object supports these combinations of
input and output data.

* Scalar input and scalar output
* Scalar input and vector output
* Vector input and vector output

The System object provides an architecture suitable for HDL code generation and hardware
deployment.

To upsample input data with an upsampler, follow these steps:

1 Create the dsphdl.Upsampler object and set its properties.
2  (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

dsphdl.Upsampler
dsphdl.Upsampler(Name,Value)

upsample
upsample

Description

upsample = dsphdl.Upsampler creates an HDL-optimized upsampler System object with default
property values.

upsample = dsphdl.Upsampler(Name,Value) sets property values using one or more name-
value arguments. Enclose each property name in single quotes.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

UpsampleFactor — Upsampling factor
3 (default) | integer in the range [1, 2.7 16]

Upsampling factor specified as an integer in the range [1, 2.7 16]. This value gives the rate by which
the System object increases the input sampling rate.

SampleOffset — Sample offset
0 (default) | integer in the range [0, 2.716 - 1]

Sample offset, specified as an integer in the range [0, UpsampleFactor - 1].

NumCycles — Minimum number of cycles between valid input samples
1 (default) | factor or multiple of UpsampleFactor | integer in the range [1, Inf]

Specify the minimum number of cycles between the valid input samples as a factor or multiple of
UpsampleFactor, or an integer in the range [1, Inf] based on the type of input and output data.

Input Data Output Data Minimum Number of Cycles Between
Valid Input Samples

Scalar Scalar Greater than or equal to UpsampleFactor

Scalar Vector Factor of UpsampleFactor

Vector Vector Integer in the range [1, Inf]

ResetInputPort — Option to enable Reset argument
false or O (default) | true or 1

Option to enable the reset input argument, specified as a numeric or logical 1 (true) or 0 (false)

ReadyPort — Ready argument
false or O (default) | true or 1

Option to enable the ready output argument, specified as a numeric or logical 1 (true) or 0 (false)
Usage

Syntax

[dataOut,validOut]
[dataOut,validOut]

upsampler(datalIn,validIn)
upsampler(dataln,validIn, reset)

Description

[dataOut,validOut] = upsampler(dataln,validIn) upsamples the input dataln using an
upsampling factor only when validIn is true.

[dataOut,validOut] = upsampler(dataln,validIn, reset) upsamples the input data when

reset is false and clears the filter internal states when reset is true. To enable the reset
argument, set the ResetInputPort property to true.
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Input Arguments

dataIn — Input data
scalar | column vector

Input data, specified as a scalar or a column vector with a length up to 64. The input data must be an
integer or a fixed-point value with a word length less than or equal to 128.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi

validIn — Valid input data indicator
true or 1| false or 0

Valid input data indicator, specified as a numeric or logical 1 (true) or 0 (false). When validInis 1
(true), the object captures the values from the dataIn argument. When validInis 0 (false), the
object ignores the values from the dataIn argument.

Data Types: logical

reset — Option to clears internal states
true or 1| false or 0

Option to clear the internal states, specified as a numeric or logical 1 (true) or 0 (false). When reset
is 1 (true), the object stops the current calculation and clears the internal states. When reset is 0
(false) and validis 1 (true), the object captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set the ResetInputPort property to true.

Data Types: logical
Output Arguments

dataOut — Upsampled data

scalar | column vector

Upsampled data, returned as a scalar or a column vector with a length up to 128.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint1l6 | uint32 | uint64 |
fi

validOut — Valid output data indicator
true or 1| false or 0

Valid output data indicator, returned as a logical 0 or 1. A value of 1 indicates that the object returns
valid data in the dataOut argument. A value of 0 indicates that values in the dataOut argument are
not valid.

Data Types: logical
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Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsphdl.Upsampler

getLatency Latency of upsampler

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Create Upsampler for HDL Code Generation

This example shows how to use a dsphdl.Upsampler System object to upsample data. You can
generate HDL code for this object.

Generate Frames of Random Input Samples

Set up workspace variables for the object to use. The object supports scalar and vector inputs. For
vector inputs, the input data must be a column vector of size 1 to 64.

L
0

8; % Upsample factor
2; % Sample offset

scalar = true;
if scalar
vecSize = 1;
value = 1;
else
vecSize = 2; S%#ok % multiple or factor of L
value = vecSize*L;
end

numFrames = 1;

dataSamples cell(1,numFrames);
framesize = zeros(1l,numFrames);
refOutput = [];

WL = 0; % word length

FL = 0; % fraction length

Generate Reference Output from Function

Generate frames of random input samples and apply the upsample function. You can use the output
that this function generates as a reference against which to compare the output of the System object.

totalsamples = 0;
for i = l:numFrames
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framesize(i) = randi([5 200],1,1);
dataSamples{i} = fi(randn(vecSize,framesize(i)),1,16,8);
ref upsample= upsample((dataSamples{i}(:)),L,0);
refOutput = [refOutput, ref upsample]; S#ok

end

Run Function Containing System Object

This example uses the HDLUpsample function for a scalar input and HDLUpsample Vec function for
a vector input. Set the properties of the System object in these functions to match the input data
properties.

function [datalOut,validOut] = HDLUpsample(dataIn,ValidIn)
persistent hdlUSObj
if isempty(hdlUSObj)
hd1lUSObj = dsphdl.Upsampler('UpsampleFactor',8, 'SampleOffset',2, 'NumCycles',b8);
end
[dataOut,validOut] = hdlUSObj(dataIn,ValidIn);
end

function [dataOut,validOut] = HDLUpsample Vec(dataIn,ValidIn)
persistent hdlUSObj
if isempty(hdlUSObj)
hd1lUSObj = dsphdl.Upsampler('UpsampleFactor',8, 'SampleOffset',2, 'NumCycles',1);
end
[dataOut,validOut] = hdlUSObj(dataln,ValidIn);
end

Insert the required number of idle cycles after each frame using the latency variable to avoid
invalid output data.

latency 3;
dataOut zeros(value, totalsamples+numFrames*latency);
validOut = zeros(1l,totalsamples+numFrames*latency);
idx=0;
for ij = l:numFrames
dataln = zeros(vecSize,size(dataSamples{ij},2)*L);
validIn = upsample(true(l,length(dataSamples{ij})),L);
datalIn(:,validIn) = dataSamples{ij};
if scalar
for ii = 1l:1length(validIn)
idx = idx+1;
[dataOut(:,idx),validOut(idx)]
fi(dataln(:,ii),1,16,8),
validIn(ii));

HDLUpsample(

end
for ii = 1l:latency
idx = idx+1;
[dataOut(:,idx),validOut(idx)] = HDLUpsample(
fi(zeros(vecSize,1),1,16,8),
false);
end
else
for ii = 1l:length(validIn) S#ok
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idx = idx+1;

[dataOut(:,idx),validOut(idx)]
fi(dataIn(:,ii),1,16,8),
validIn(ii));

HDLUpsample Vec(

end
for ii = 1l:latency
idx = idx+1;
[dataOut(:,idx),validOut(idx)] = HDLUpsample Vec(
fi(zeros(vecSize,1),1,16,8),
false);
end
end
end

Compare Function Output with Reference Output

Compare the output of the HDL function with the output of the upsample function.

HDLOutput
HDLOutput

dataOut(:,validOut==1);
HDLOutput(:);

fprintf('\n Upsampler\n');

difference = (abs(HDLOutput-refOutput(l:length(HDLOutput)))=>0);

fprintf(['\nTotal number of samples differed between Behavioral '
"and HDL simulation: %d \n'],sum(difference));

Upsampler

Total number of samples differed between Behavioral and HDL simulation: 0

Explore Latency of Upsampler Object

The latency of the dsphdl.Upsampler System object™ varies according to the upsample factor and
the input vector size. Use the getLatency function to find the latency of an upsampler configuration.
The latency is the number of cycles between the first valid input and the first valid output, assuming
the input is continuously valid.

Create a dsphdl.Upsampler System object and get the latency. The default System object has an
upsampling factor of 3 and a sample offset set of 0.

upsampler = dsphdl.Upsampler

upsampler =
dsphdl.Upsampler with properties:

UpsampleFactor: 3
SampleOffset: 0
NumCycles: 1

Show all properties

V=1;
Ydefault

getLatency(upsampler,V)

Ydefault 3
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Modify the object and check the resulting change in latency.

upsampler.UpsampleFactor = 8;
Y1 = getLatency(upsampler)

Y1 =2

Change the vector input size to 2. Check the resulting change in latency.
V = 2;

upsampler.UpsampleFactor = 10;

LVec = getlLatency(upsampler,V)

LVec = 2

Algorithms
Latency
The latency of the System object changes according to the length of the input. The latency of the

System object is 1 when you set the UpsampleFactor property to 1. This table shows the latency of
the System object.

Input Data Output Data |Latency in Clock Cycles
Scalar Scalar 3
Scalar Vector 3
Vector Vector 2
Scalar Input

This figure shows the output of the System object with the default configuration, when you set the
UpsampleFactor and SampleOffset property values to 3 and 0, respectively. The latency of the
System object is three clock cycles.

Clock M e e e e e e e e e L
Input Signals
- data
—  vald
Oultput Signals
e data

—  wvalid
—  ready

Cursor 2

This figure shows the output of the System object when you set the UpsampleFactor property value
to 8 and the SampleOffset property value to 1. The latency of the System object is three clock
cycles.
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Clock
Input Signals
»data
—  valid
Output Signals
»data

— wvalid
—  ready

Cursor 1[152.50 s
Cursor2| 3.00s

Vector Input

This figure shows the output of the System object for a two-element column vector input when you
set the UpsampleFactor and SampleOffset property values to 3 and 0, respectively. The latency of
the System object is two clock cycles.

Clock

Input Signals
»data

—  valid
Ouiput Signals
»data

—  valid

—  ready

Cursor1| 2.00s
LEE

Cursor 2

This figure shows the output of the System object for an eight-element column vector input when you
set the UpsampleFactor property value to 4 and the SampleOffset property value to 1. The
latency of the System object is two clock cycles.

Clock
Input Signals
»-data
—  wvahd
Ouiput Signals
- data

—  wvalid
—  ready

Cursor 1
Cursor 2

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. The
performance also varies based on the input data type.

This table shows the resource and performance data synthesis results of the System object for a
scalar input and for a 16-element column vector input of type fixdt(1,16,0) when you set the
UpsampleFactor and SampleOffset property values to 8 and 0, respectively. The generated HDL
targets the Xilinx Zyng- 7000 ZC706 Evaluation Board.
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Input Data Slice LUTs Slice Registers Maximum Frequency in MHz
Scalar 35 60 900.81
Vector 384 514 926.29

The resources and frequencies vary based on the type of input data and the value of
UpsampleFactor, as well as other property values you select in the System object. Using a vector
input can increase the throughput, however, doing so also increases the number of hardware
resources that the System object uses.

Version History
Introduced in R2022b
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The software supports double and single data types for simulation, but not for HDL code
generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also

Blocks
Upsampler | Downsampler

Objects
dsphdl.Downsampler
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dsphdl.LMSFilter

Package: dsphdl

Minimize error between observed and desired signals

Description

The dsphdl.LMSFilter System object estimates the filter weights and minimizes the error between
a desired signal and an observed signal using the mean square error (MSE) criteria. The System
object adapts its weights until the error between the data and the desired data is minimal. The
System object accepts scalar and vector inputs of type real and complex.

You can use this System object for various applications, such as noise cancellation, system
identification, and inverse system modeling. The System object provides an architecture suitable for
HDL code generation and hardware deployment. The System object provides an architecture suitable
for HDL code generation and hardware deployment.

To filter input data with an LMS filter:

1 Create the dsphdl.LMSFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

LMSFilter = dsphdl.LMSFilter

LMSFilter = dsphdl.LMSFilter(Name,Value)
Description

LMSFilter = dsphdl.LMSFilter creates an LMS filter System object, LMSFilter, with default
properties.

LMSFilter = dsphdl.LMSFilter(Name,Value) sets properties by using one or more name-value
pairs. Enclose each property name in single quotes. For example, 'FilterLength', '64"' sets the
filter length to 64.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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FilterLength — Length of filter
32 (default) | positive integer less than or equal to 2048

Specify the length of the filter as a positive integer less than or equal to 2048.

StepSizeSource — Step size source
'Property' (default) | 'Input port'

Choose how to specify the step size factor.

StepSize — Step size
0.01 (default) | positive scalar numeric value

Specify the step size factor as a positive scalar numeric value.

Dependencies
To enable this property, set StepSizeSourceto 'Property’.

InitialConditions — Initial value of filter weights
0 (default) | scalar | row vector

Specify the initial values of the filter coefficients as a scalar or row vector of length equal to the
FilterLength property value.

When you specify a scalar value, the object considers it as a row vector equivalent to the specified
scalar value. The default value of this property is 0.

AdaptInputPort — Enable adapt input argument
false (default) | true

Enable adapt input argument of the object.

WeightsOutputPort — Enable filter weights output argument
true (default) | false

Enable weights output argument of the object.
For each iteration, the object outputs the current updated filter weights from this argument.

ErrorOutputPort — Enable filter error output argument
false (default) | true

Enable error output argument of the object. When enabled, the object returns the result of
subtracting the output signal from the desired signal.

Data Types

RoundingMethod — Rounding mode used for internal fixed-point calculations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method for type-casting the output, specified as 'Floor', 'Ceiling', 'Convergent’,
'Nearest', 'Round’, or 'Zero'. The object uses this property when casting the output to the data
type specified by the OutputDataType property. When the input data type is floating point, the
object ignores this property. For more details, see “Rounding Modes”.
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OverflowAction — Overflow actions for fixed-point calculations
‘"Wrap' (default) | 'Saturate’

Overflow action, specified as 'Wrap' or 'Saturate’.

StepSizeDataType — Data type of step size
'Same word length as input' (default) | '<data type expression>'

Step size data type, specified as 'Same word length as input' or '<data type
expression>"'.

StepSizeErrorProductDataType — Data type of step size error product
‘Same word length as input' (default) | 'Full precision' | '<data type expression>'

Step size error product data type, specified as 'Full precision', 'Same word length as
input', or '<data type expression>"'.

WeightsDataType — Data type of weights
'Same as input' (default) | ‘'numerictype(1l,16,15)"' | '<data type expression>'

Specify the filter weights fixed-point data type as one of 'Same as input',
'numerictype(1l,16,15)', or '<data type expression>"'.

Control Arguments

ResetInputPort — Option to enable reset input argument
false (default) | true

Option to enable the reset input argument, specified as true or false. When you set this property
to true, the object expects a value for the reset input argument. The reset signal implements a
local synchronous reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

HDLGlobalReset — Option to connect data path registers to generated HDL global reset
signal
false (default) | true

Option to connect the data path registers to the generated HDL global reset signal, specified as true
or false. Set this property to true to connect the generated HDL global reset signal to the data
path registers. This property does not change the arguments of the object or modify simulation
behavior in MATLAB. When you set this property to false, the generated HDL global reset clears
only the control path registers. The generated HDL global reset can be synchronous or asynchronous
depending on your HDL code generation settings.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Usage

Syntax

[dataOut,validOut] = LMSFilt(datalIn,desiredIn,validIn)
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[dataOut,validOut,error,weights] = LMSFilt(dataIn,desiredIn,validIn,adapt)
[dataOut,validOut] = LMSFilt(datalIn,desiredIn,validIn, resetlIn)

Description

[dataOut,validOut] = LMSFilt(dataln,desiredIn,validIn) returns the LMS filtered data,
dataOut, for inputs, dataIn and desiredIn, when validInis true. validIn and validOut are
logical scalars that indicate the validity of the input and output signals, respectively.

[dataOut,validOut,error,weights] = LMSFilt(dataln,desiredIn,validIn,adapt)
returns the LMS filtered data, dataOut and also returns error, error, and weights weights data,
for inputs, dataln, desiredIn, and adapt, when validInis true. validIn and validOut are
logical scalars that indicate the validity of the input and output signals, respectively.

To use this syntax, set the AdaptInputPort, ErrorQutputPort, and WeightsOutputPort
properties to true. For example:

LMSFilt = dsphdl.LMSFilter(__ , 'AdaptInputPort',true, 'ErrorQutputPort',true, 'WeightsOutputPort',
[dataOut,validOut,error,weights] = LMSFilt(dataIn,validIn,adapt)

[dataOut,validOut] = LMSFilt(dataIn,desiredIn,validIn, resetIn) returnsthe LMS
filtered data, dataOut when validInis true and resetlInis false. When resetlInis true, the
object stops the current calculation and clears all internal state.

To use this syntax set the ResetInputPort property to true.
Input Arguments

dataIn — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values. The input vector size
must be in the range [2, 64] and it must be less than the filter length.

You can use double and single data types for simulation, but not for HDL code generation. For
HDL code generation, the input date type must be signed fixed point.

Data Types: single | double | fi
Complex Number Support: Yes

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the input arguments dataIn and desiredIn. When validInis @ (false), the
object ignores the values from the output arguments dataln and desiredIn.

Data Types: Llogical

desiredIn — Desired input data
scalar or column vector of real or complex values

Desired input data, specified as a scalar or column vector of real or complex values. The input vector
size must be in the range [2, 64] and it must be less than filter length. The desired signal must have
the same data type, complexity, and dimensions as the input data signal.

Data Types: single | double | fi
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Complex Number Support: Yes

stepSize — Convergence and stability of filter
real scalar

Specify the step size to control convergence and stability of the filter. The recommended step size
must be less than 1/(2 x Input power x Filter length).

You can use double and single data types for simulation, but not for HDL code generation. For
HDL code generation, the input date type must be unsigned fixed point.

Dependencies

To enable this argument, set StepSizeSource to 'Property".

Data Types: double | single | fi

adapt — Update filter weights
scalar

When adaptis 1 (true) and validInis 1 (true), the object adapts to the new filter weights for
every validIn. When the adapt is 0 (false) and the input validInis 1 (true) or 0 (false), the
object remains at its previous filter weights.

Dependencies

To enable this argument, set AdaptInputPort to true.
Data Types: Llogical

resetIn — Clears internal states
logical scalar

Control signal that clears internal states. When resetInis 1 (true), the object stops the current
calculation, clears internal states, and sets to the initial values of filter weights specified for the
InitialConditions property. When the resetlInis 0 (false) and the input validInis 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set the ResetInputPort property to true.

Data Types: logical
Output Arguments

dataOut — Filtered output data
scalar or column vector of real or complex values

Filtered output data, returned as a scalar or column vector of real or complex values. The dimensions
of the output data match the dimensions of the input data.

When the input data is a floating-point type, the output data inherits the data type of the input data.
When the input data is a fixed-point type, the output data is a fixed point with word length and
fractional length incremented by 1.
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Data Types: fi | single | double

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.

Data Types: logical

error — Error between output and desired signals
real or complex scalar or column vector

Outputs the result of subtracting the filtered output signal from the desired signal when the output
argument validOut is 1 (true) .

If the input data and desired is a scalar or a column vector, the error signal has the same dimension
and complexity as the input data. When the input data is a floating-point type, the output data
inherits the data type of the input data. When the input data is a fixed-point type, the output data is
fixed point with word length incremented by 2 and fractional length incremented by 1.

Dependencies

To enable this argument, set ErrorOutputPort to true.

Data Types: logical

weights — Updated filter weights
row vector

For each iteration, the ohject outputs the current updated filter weights from this argument when the
output argument validOut is 1 (true) .

For floating-point inputs, the weights data type must match the input type. For fixed-point signals, the
input must match the data type set to the WeightsDataType property.

Dependencies

To enable this argument, set WeightsOutputPort to true.
Data Types: logical
Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsphdl.LMSFilter
getLatency Latency of LMS Filter

Common to All System Objects
step Run System object algorithm
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release Release resources and allow changes to System object property values and input
characteristics
reset Reset internal states of System object

Examples

System Identification Using LMS Filter

This example shows how use the dsphdl.LMSFilter System object™ for system identification.
System identification is a process to identify the coefficients of an unknown system using an adaptive
filter. For more information, see “System Identification -- Using an Adaptive Filter to Identify an
Unknown System”.

Set Up Input Parameters

Set up input variables for the System object dsphdl.LMSFilter and the reference System object
dsp.LMSFilter to use.

filterLength = 35;
stepSize = 0.008;
frameSize = 1500;

Initialize System Objects

Initialize the dsphdl.LMSFilter System object and the reference System object
dsphdl.LMSFilter with the required properties.

HDLLMSFilterObj = dsphdl.LMSFilter('FilterLength', filterLength,
'StepSize', stepSize, 'WeightsOutputPort',true,
"ErrorQutputPort',true);

% dsp.LMSFilter for reference

Imsfilt = dsp.LMSFilter(filterLength, 'StepSize', stepSize);

Design System Parameters for Indentification

Create a dsp.FIRFilter object that represents a system to be identified. Use firl function to
design the filter coefficients. The designed filter is a lowpass filter with 0.25 cut-off frequency.

b = firl(filterLength-1,0.25); % channel coefficients
firfiltl = dsp.FIRFilter('Numerator',b); % filter object

% Initialize array plot function

AP = dsp.ArrayPlot('YLimits',[-0.1 .31, 'ShowLegend',true,
'"Position', [0 O 560 420], 'ChannelNames', ...
{'Actual Coefficients', 'dsphdl.LMSFilter Estimated Coefficients',...
'dsp.LMSFilter Estimated Coefficients'});

Generate Input Observed and Desired Signals

Use randn function to generate observed input signal x and AWGN noise signal n. Apply the
firfiltl function on the signal x. Add the signal n to x and generate the desired signal d. Provide
these signals as input to the LMS filter System objects and capture their outputs.

X
n

fi(randn(frameSize,1),1,16,13); % input observed signal
0.001*randn(frameSize,1); % AWGN noise signal
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d = fi(firfiltl(x) + n ,1,16,13); % input desired signal
% Initialize intermediate variables

y = zeros(length(x),1);

e = zeros(length(x),1);

w = zeros(length(x),filterLength);

v = zeros(length(x),1);

for ii=1:1length(x)

[ y(ii,:), v(ii,:), e(ii,:), w(ii,:)] = ...
HDLLMSFilterObj(x(ii), d(ii), true );
end

o°

Capture valid output data

y(v==1,:); % filter output
w(v==1,:); % filter weights output
e(v==1,:); % filter error output

D =<
I nn

% Capture reference output
[yl,el,wl] = Imsfilt(double(x),double(d));

Compare Output Weights

The weight vectors w and w1l represent the weights of the LMS filter object dsphdl.LMSFilter and
the reference object dsp.LMSFilter, respectively. To confirm the convergence, compare the
numerator of the design system firfilt1l with the estimated weights of the LMS filter System

object dsphdl.LMSFilter and the reference System object dsp.LMSFilter.

% Plot numerators |b|, |w|, and |wl].
AP([b.',double(w(end,:)).",wl(:)]);
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PLOT MEASUREMENTS
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Explore Latency of LMS Filter Object

The latency of the dsphdl.LMSFilter System object™ varies with the input size and filter length.
Use the getLatency function to find the latency of an LMS Filter for a particular configuration. The
latency is measured as the number of cycles between the first valid input and the first valid output,
assuming that the input is contiguous.

Create dsphdl.LMSFilter System object and calculate latency.
Imsfilter

dsphdl.LMSFilter

Imsfilter =
dsphdl.LMSFilter with properties:

FilterLength: 32
StepSizeSource: 'Property’
StepSize: 0.0100
InitialConditions: O
AdaptInputPort: false
WeightsOutputPort: true
ErrorOutputPort: false

Show all properties

Calculate latency for the object with a filter length 64.
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Ilmsfilter = dsphdl.LMSFilter('FilterLength',64);
latencyDT = getlLatency(lmsfilter)
latencyDT = 13

Calculate latency for the object with a filter length 75. The latency does not change.

Imsfilter = dsphdl.LMSFilter('FilterLength',75);
latencyDT = getlLatency(lmsfilter)
latencyDT = 13

Calculate latency when the input is complex.

latencyDT getLatency(lmsfilter, complex(0))

latencyDT 15

Calculate latency when input is real with vector size 4.
latencyDT = getlLatency(lmsfilter,real(0),4)

latencyDT 18

Algorithms

The following figure shows the high-level architecture block diagram of the LMS Filter System object
for a scalar input. An observed signal is provided as input to the Input Memory block and also to the
Transpose Filter block, which is configured with a Discrete FIR Filter block. The output of the
Transpose Filter block is subtracted from the Desired input signal to output the Filter Error signal.
The Filter Error signal is multiplied with the Step-Size input signal and the resulted step-error
product converted to the required data type. The step-error product is multiplied with the
corresponding tap delay line conjugate from the Input Memory block. In the Integrator block, the
multiplied output is added to the previous weight, Unit Delay, to output new filter weights. These
filter weights are routed back to the Transpose Filter block for the next weight updates.

Scalar Architecture
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The following figure shows the high-level architecture block diagram of the LMS Filter System object
for vector input. The vector architecture is almost similar to the scalar architecture. In the vector
architecture, step-error product vectors are multiplied with the corresponding tap delay line
conjugates from the Input Memory block and then summed up in the Summation block. In the
Integrator block, the summed output is added to the previous weight vector Unit Delay to output new
filter weights. These filter weights are routed back to the Transpose Filter block for the next weight
updates.

Vector Architecture
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For hardware implementation, all these operations are pipelined, which takes around D number of
delays to update the filter weights, where D is the latency of the System object.

Latency
The latency of the System object varies with the input size and complexity.
This figure shows the output of the System object for a real scalar input when you set the

FilterLength argument to 64 and all other properties to their default values. The latency of the
System object is 13 clock cycles.

¥ InputSignals
»observedSignal | 1.246673583984.
= desiredSignal 0.882843017578
—  wvalidin L
¥ OutputSignals

P filterOut
vahidOQut
P emQOut

Cursor 1
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This figure shows the output of the System object for a 4-by-1 real vector input when you set the
FilterLength argument to 64 and all other properties to their default values. The latency of the
System object is 18 clock cycles.

¥ InputSignals
»observedSignal |-1.422838208007312
¢ desiredSignal 1.3735961914062°
— validin L

¥ OuiputSignals

P filberOut 0000
validOut L
& armQut -0.03350230072125

Cursor 1

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. These
resource and performance data are the place-and-route results from the generated HDL targeted to a
Xilinx ZynqUltrascale+ MPSoC evaluation board. The two examples in the following tables use this
common configuration.

+ Filter length — 64

* 16-bit real input data

* Step size (mu) — 0.006

* [Initial value of filter weights — 0

For a scalar input, the design achieves a clock frequency of 523.01 MHz. The design uses these

resources.
Resource Number Used
LUT 8402

FFS 18819

Xilinx LogiCORE DSP48 129

For a 4-by-1 vector input, the design achieves a clock frequency of 512.82 MHz. The design uses

these resources.

Resource Number Used
LUT 27712

FFS 30322

Xilinx LogiCORE DSP48 516

Using a vector input can increase the throughput, however, doing so also increases the number of
hardware resources that the System object uses.
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Version History
Introduced in R2023a
References

[1] Hayes, M.H. Statistical Digital Signal Processing and Modeling. New York: John Wiley & Sons,
1996.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

The software supports double and single data types for simulation, but not for HDL code
generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also

Blocks
LMS Filter
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getLatency

Package: dsphdl

Latency of FIR filter

Syntax

getLatency(hdlobj)
getLatency(hdlobj,inputType, [],isInputComplex,V)

Y
Y
Y = getLatency(hdlobj,coeffType, coeffPrototype,isInputComplex,V)

Description

Y = getLatency(hdlobj) returns the latency, Y, between the first valid input sample and the first
valid output sample, assuming contiguous input samples.. Use this syntax when the
CoefficientsDataType is set to a numeric type, you are not using programmable coefficients, and
the input data is not complex or a vector.

Y = getLatency(hdlobj,inputType,[],isInputComplex,V) returns the latency, Y. The
latency depends on filter structure, filter coefficients, and input vector size. Use this syntax when you
are not using programmable coefficients. The these arguments may be optional, depending on the
object configuration.

* Use inputType when you set CoefficientsDataType property to 'Same word length as
input'. The latency can change with input data type because the object casts the coefficients to
the input data type, which can affect multiplier sharing for equal-absolute-value coefficients.

* Use isInputComplex when your input data is complex and you are using a partly-serial systolic
architecture. The latency changes when you have complex data and complex coefficients because
of the extra adder pipeline. When you specify isInputComplex, you must also give a placeholder
argument, [] for the unused third argument.

* Use V to specify the input vector size when your input is not scalar.

Y = getLatency(hdlobj,coeffType, coeffPrototype,isInputComplex,V) returns the
latency, Y. Use this syntax when you are using programmable coefficients. coeffType is the data
type of the input coefficients. The final two arguments may be optional, depending on the object
configuration.

* Use coeffPrototype to optimize the programmable filter for symmetric or antisymmetric
coefficients. The prototype specifies a pattern that all input coefficients must follow. Based on the
prototype, the object implements an optimized filter that shares the multipliers for symmetric
coefficients. If you are not using the memory coefficient interface, and your input coefficients do
not all conform to the same pattern or to opt out of multiplier optimization, you can omit this
argument or specify the prototype as an empty vector, [ ]. The coeffPrototype is required if
you use the memory coefficient interface.

* Use isInputComplex when your input data is complex. When you specify isInputComplex, you
must also specify the coeffPrototype or a placeholder argument, [].

» Use V to specify the input vector size when your input is not scalar.
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Examples

Explore Latency of FIR Object

The latency of the dsphdl.FIRFilter System object™ varies with filter structure, serialization
options, input vector size, and whether the coefficient values provide optimization opportunities. Use
the getLatency function to find the latency of a particular configuration. The latency is the number
of cycles between the first valid input and the first valid output.

Create a dsphdl.FIRFilter System object™ and request the latency. The default architecture is
fully parallel systolic. The default data type for the coefficients is 'Same word length as input'.
Therefore, when you call the getLatency object function, you must specify an input data type. The
object casts the coefficient values to the input data type, and then checks for symmetric coefficients.
This Numerator has 31 symmetric coefficients, so the object optimizes for the shared coefficients,
and implements 16 multipliers.

Numerator = firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]);
Input type = numerictype(1,16,15); % object uses only the word length for coefficient type cast

hdlfir = dsphdl.FIRFilter('Numerator', Numerator);
L sysp = getLatency(hdlfir,Input type)
L sysp = 23

For the same fully parallel filter with vector input, the latency is lower. Call getLatency with an
input vector size of four to check the latency for that case. The empty arguments are placeholders for
when you use programmable coefficients or complex input data.

L syspv = getLatency(hdlfir,Input type,[]1,[],4)
L syspv = 17

Check the latency for a partly serial systolic implementation of the same filter. By default, the
SerializationOption propertyis 'Minimum number of cycles between valid input
samples', and so you must specify the serialization rule using the NumCycles property. To share
each multiplier between 8 coefficients, set the NumCycles to 8. The object then optimizes based on
the coefficient symmetry, so there are 16 unique coefficients shared 8 times each over 2 multipliers.
This serial filter implementation requires input samples that are valid every 8 cycles.

hdlfir = dsphdl.FIRFilter('Numerator',Numerator, 'FilterStructure', 'Partly serial systolic', "NumC
L syss = getLatency(hdlfir,Input type)
L syss = 19

Check the latency of a nonsymmetric fully parallel systolic filter. The Numerator has 31 coefficients.

Numerator = sinc(0.4*[-30:0]1);

hdlfir = dsphdl.FIRFilter('Numerator',Numerator);
L sysp = getLatency(hdlfir,Input type)
L sysp = 37

Check the latency of the same nonsymmetric filter implemented as a partly serial systolic filter. In this
case, specify the SerializationOption by the number of multipliers. The object implements a
filter that has 2 multipliers and requires 8 cycles between input samples.
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hdlfir

L_syss
L syss =

Check the

dsphdl.FIRFilter('Numerator',Numerator, 'FilterStructure', 'Partly serial systolic',...
'SerializationOption', 'Maximum number of multipliers', 'NumberOfMultipl.
getLatency(hdlfir,Input type)

37

latency of a fully parallel transposed architecture. The latency for this filter structure with

scalar input is always 6 cycles.

hdlfir =
L trans =

L trans =

dsphdl.FIRFilter('Numerator', Numerator, 'FilterStructure', 'Direct form transposed');
getLatency(hdlfir,Input type)

6

The latency of the transposed filter increases with input vector size.

L transv4
L transv4
L transv8

L transv8

Input A

hdlobj —
dsphdl.F

= getLatency(hdlfir,Input_type,[],[1,4)
9

= getLatency(hdlfir,Input_type,[],[1,16)

=11

rguments

HDL-optimized filter System object
IRFilter

HDL-optimized filter System object that you created and configured.

inputTyp
numerict

Input data

e — Input data type
ype object

type, specified as a numerictype object. Call numerictype(s,w, ), where s is 1 for

signed and 0 for unsigned, w is the word length in bits, and f is the number of fractional bits.

If you specify [] for this argument, the object uses double data type to calculate the latency. The
result is equivalent to the fixed-point latency as long as the coefficient data type is large enough to
represent the coefficient values exactly.

Dependencies

This argument applies when the CoefficientsDataTypeis 'Same word length as input'.

coeffTyp
numerict

e — Input coefficients data type
ype object

Input coefficients data type, specified as a numerictype object. This argument applies when you use

programm

able coefficients. Call numerictype(s,w, ), where s is 1 for signed and 0 for unsigned,

w is the word length in bits, and f is the number of fractional bits.

Dependencies

This argument applies when you set NumeratorSource to 'Input port (Parallel

interfac

e) ' or 'Input port (Memory interface)'.
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coeffPrototype — Prototype filter coefficients
[ ] (default) | vector of numeric real values

Prototype filter coefficients, specified as a vector of numeric real values. The prototype specifies a
pattern that all input coefficients must follow. Based on the prototype, the object implements an
optimized filter that shares the multipliers for symmetric coefficients. If your input coefficients do not
all conform to the same pattern, or to opt out of multiplier optimization, specify the prototype as an
empty vector, [].

Coefficient optimizations affect the latency of the filter object.

Dependencies

This argument applies when you set NumeratorSource to 'Input port (Parallel
interface)' or 'Input port (Memory interface)'. When you have complex input data, but
are not using programmable coefficients, set this argument to [].

Data Types: single | double | int8 | int1l6 | int32 | uint8 | uint16 | uint32

isInputComplex — Complexity of input data
false (default) | true

Set this argument to true if your input data is complex. You can omit this argument if your input data
is real. When your filter has complex input data and complex coefficients there is an additional adder
at the output of the filter that adds pipeline latency.

Data Types: logical

V — Vector size
power of 2 from 1 to 64

Vector size, specified as a power of 2 from 1 to 64. Use this argument to request the latency of an

object similar to hdlobj, but with V-sample vector input. When you do not specify this argument, the
function assumes scalar input.

Output Arguments

Y — Cycles of latency
integer

Cycles of latency that the filter object takes between the first valid input and the first valid output.
Each call to the object simulates one cycle. This latency assumes valid input data on every cycle.

Version History
Introduced in R2017a

See Also

Objects
dsphdl.FIRFilter
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getLatency

Package: dsphdl

Latency of FFT calculation

Syntax

Y
Y
Y

getLatency(hdlfft)
getLatency(hdlfft,N)
getLatency(hdlfft,N,V)

Description

Y = getLatency(hdlfft) returns the number of cycles, Y, that the object takes to calculate the
FFT of an input frame. The latency depends on the input vector size and the FFT length.

Y = getLatency(hdlfft,N) returns the number of cycles that an ohject would take to calculate
the FFT of an input frame, if it had FFT length N, and scalar input. This function does not change the
properties of the hd1fft.

Y = getlLatency(hdlfft,N,V) returns the number of cycles that an object would take to calculate
the FFT of an input frame, if it had FFT length N, and vector input of size V. This function does not
change the properties of hd1fft.

Examples

Explore Latency of HDL FFT Object

The latency of the object varies with the FFT length and the vector size. Use the getLatency
function to find the latency of a particular configuration. The latency is the number of cycles between
the first valid input and the first valid output, assuming that the input is contiguous.

Create a new dsphdl. FFT object and request the latency.

hdlfft = dsphdl.FFT('FFTLength',512);
L512 = getlLatency(hdlfft)

L512 = 599

Request hypothetical latency information about a similar object with a different FFT length. The
properties of the original object do not change.

L256 = getlLatency(hdlfft,256)
L256 = 329

N = hdlfft.FFTLength

N = 512

Request hypothetical latency information of a similar object that accepts eight-sample vector input.
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L256v8

getLatency(hdlfft,256,8)

L256v8 = 93

Enable scaling at each stage of the FFT. The latency does not change.

hdlfft.Normalize = true;
L512n = getLatency(hdlfft)

L512n = 599

Request the same output order as the input order. The latency increases because the object must
collect the output before reordering.

hdlfft.BitReversedQutput = false;
L512r = getLatency(hdlfft)

L512r = 1078

Input Arguments

hdlfft — FFT System object
dsphdl.FFT | dsphdl.IFFT

FFT System object. See dsphdl.IFFT or dsphdl.FFT.

N — FFT length
integer power of 2 from 22 to 216

FFT length, specified as an integer power of 2 from 22 to 216, Use this argument to request the
latency of an object similar to hd1fft, but with FFT length N.

V — Vector size
power of 2 from 1 to 64

Vector size, specified as a power of 2 from 1 to 64. The vector size cannot be greater than the FFT
length. Use this argument to request the latency of an object similar to hd1fft, but with V-sample
vector input. When you do not specify this argument, the function assumes scalar input.

Output Arguments

Y — Cycles of latency
integer

Cycles of latency that the object takes to calculate the FFT of an input frame, returned as an integer.
The latency is the number of cycles between the first valid input and the first valid output, assuming
the input is contiguous. Each call to the object simulates one cycle.

Version History
Introduced in R2014a
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See Also

Objects
dsphdl.Channelizer | dsphdl.ChannelSynthesizer | dsphdl.IFFT | dsphdl.FFT
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getLatency

Package: dsphdl

Latency of CIC decimation filter

Syntax
Y = getLatency(hdlcic)
Y = getLatency(hdlcic,V)

Description

Y = getLatency(hdlcic) returns the latency, Y, between the first valid input sample and the first
valid output sample, assuming contiguous input samples. The latency depends on the NumSections
and GainCorrection properties.

Y = getlLatency(hdlcic,V) returns the latency, Y, between the first valid input sample and the
first valid output sample, assuming contiguous input samples and vector input of size V. The latency
depends on the vector input size, NumSections property, and the GainCorrection property.

Examples

Explore Latency of CIC Decimator Object

The latency of the dsphdl.CICDecimator System object™ varies depending on how many
integrator and comb sections your filter has, the input vector size, and whether you enable gain
correction. Use the getLatency function to find the latency of a particular filter configuration. The
latency is the number of cycles between the first valid input and the first valid output, assuming the
input is continuously valid.

Create a dsphdl.CICDecimator System object and request the latency. The default System object
filter has two integrator and comb sections, and the gain correction is disabled.

hdlcic = dsphdl.CICDecimator

hdlcic =
dsphdl.CICDecimator with properties:

DecimationSource: 'Property'
DecimationFactor: 2
DifferentialDelay: 1
NumSections: 2
GainCorrection: f

Show all properties

L def = getLatency(hdlcic)

5

L def
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Modify the filter object so it has three integrator and comb sections. Check the resulting change in
latency.

hdlcic.NumSections = 3;
L 3sec = getlLatency(hdlcic)

L 3sec = 6

Enable the gain correction on the filter object with vector input size 2. Check the resulting change in
latency.

hdlcic.GainCorrection = true;

vecSize = 2;
L wgain = getLatency(hdlcic,vecSize)
L wgain = 25

Input Arguments

hdlcic — CIC decimation filter System object
dsphdl.CICDecimator

CIC decimation filter System object that you created and configured. See dsphdl.CICDecimator.

V — Vector size
in range from 1 to 64

Vector size, specified in the range from 1 to 64. DecimationFactor property must be an integer
multiple of the input frame size. Use this argument to request the latency of an object similar to

hdlcic, but with V sample vector input. When you do not specify this argument, the function
assumes scalar input.

Output Arguments

Y — Cycles of latency
integer

Cycles of latency that the CIC decimator object takes between the first valid input and the first valid

output. Each call to the object simulates one cycle. This latency assumes valid input data on every
cycle.

Version History
Introduced in R2019b

See Also

Objects
dsphdl.CICDecimator
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getLatency

Package: dsphdl

Latency of CIC interpolation filter

Syntax
Y = getlLatency(hdlcic)
Y = getLatency(hdlcic,V)

Description

Y = getlLatency(hdlcic) returns the latency, Y, between the first valid input sample and the first
valid output sample, assuming contiguous input samples. The latency depends on the NumSections
property and whether GainCorrection is enabled.

Y = getlLatency(hdlcic,V) returns the latency, Y, between the first valid input sample and the
first valid output sample, assuming contiguous input samples and vector input of size V. The latency
depends on the NumSections property, vector input size, and whether GainCorrection is enabled.

Examples

Explore Latency of CIC Interpolator Object

The latency of the dsphdl.CICInterpolator System object™ varies depending on how many
integrator and comb sections your filter has, the input vector size, and whether you enable gain
correction. Use the getLatency function to find the latency of a particular filter configuration. The
latency is the number of cycles between the first valid input and the first valid output, assuming the
input is continuously valid.

Create a dsphdl.CICInterpolator System object and request the latency. The default System
object filter has two integrator and comb sections, and the gain correction is disabled.

hdlcic = dsphdl.CICInterpolator

hdlcic =
dsphdl.CICInterpolator with properties:

InterpolationSource: 'Property'

InterpolationFactor: 2

DifferentialDelay: 1

NumSections: 2

NumCycles: 1

GainCorrection: false
Show all properties

L def = getLatency(hdlcic)

L def = 13
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Modify the filter object so it has three integrator and comb sections. Check the resulting change in
latency.

hdlcic.NumSections = 3;
L 3sec = getlLatency(hdlcic)

L 3sec = 18

Enable the gain correction on the filter object with vector input size 2. Check the resulting change in
latency.

hdlcic.GainCorrection = true;

vecSize = 2;
L wgain = getLatency(hdlcic,vecSize)
L wgain = 33

Input Arguments

hdlcic — CIC interpolation filter System object
dsphdl.CICInterpolator

CIC interpolation filter System object that you created and configured. See
dsphdl.CICInterpolator.

V — Vector size
in range from 1 to 64

Vector size, specified in the range from 1 to 64. Use this argument to request the latency of an object

similar to hdlcic, but with V sample vector input. When you do not specify this argument, the
function assumes scalar input.

Output Arguments

Y — Cycles of latency
integer

Cycles of latency that the CIC interpolator object takes between the first valid input and the first valid

output. Each call to the object simulates one cycle. This latency assumes valid input data on every
cycle.

Version History
Introduced in R2022a

See Also

Objects
dsphdl.CICInterpolator
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getLatency

Package: dsphdl

Latency of FIR decimation filter

Syntax

Y = getLatency(hdlfird, inputType,isInputComplex,inputVecSize)
Y = getlLatency(hdlfird)

Description

Y = getLatency(hdlfird, inputType,isInputComplex,inputVecSize) returns the latency,
Y, between the first valid input sample and the first valid output sample, assuming contiguous input
samples. The latency depends on filter structure and filter coefficients. The final two arguments may
be optional, depending on the object configuration.

* Use inputType when you set CoefficientsDataType property to 'Same word length as
input'. Otherwise, setitto [].

* Set isInputComplex to true when your input data is complex. The latency changes when you
have complex data and complex coefficients, because of the extra adder pipeline.

Y = getLatency(hdlfird) returns the latency, Y. Use this syntax when the
CoefficientsDataType is set to a numeric type, you are using scalar input, and the input data is
not complex.

Examples

Explore Latency of FIR Decimator Object

The latency of the dsphdl.FIRDecimator System object™ varies with filter architecture and input
vector size. Use the getLatency function to find the latency of a particular configuration. The
latency is the number of cycles between the first valid input and the first valid output.

Create a dsphdl.FIRDecimator System object™ and request the latency. The default filter is a
direct-form systolic architecture. The default data type for the coefficients is 'Same word length
as input'. Therefore, when you call the getLatency object function, you must specify an input
data type. The default filter has 36 coefficients. This example assumes the data input to your filter is
complex-valued. The default coefficients are real-valued. Complexity affects filter latency only when
you have complex-valued data and complex-valued coefficients.

inputType = numerictype(1l,16,15); % object uses only the word length for coefficient type cast

complexInput = true;
downBy4 = dsphdl.FIRDecimator('DecimationFactor',4);
L by4dscalar = getlLatency(downBy4, inputType, complexInput)

L bydscalar = 44

Check the latency for the same filter with vector input.
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vectorSize = 2;
L by4Vec2 = getlLatency(downBy4,inputType, complexInput,vectorSize)

L by4Vec2 = 28
Check the latency of a transposed architecture.

downBy4.FilterStructure = 'Direct form transposed';
L by4trans = getLatency(downBy4,inputType, complexInput)

L by4trans = 11
Check the latency for the transposed filter with vector input.

vectorSize = 4;
L by4transVec4 = getLatency(downBy4,inputType, complexInput,vectorSize)

L by4transVecd4 = 9

Input Arguments

hdlfird — HDL-optimized FIR filter System object
dsphdl.FIRDecimator

HDL-optimized FIR decimation filter System object that you created and configured. See
dsphdl.FIRDecimator.

inputType — Input data type
numerictype object

Input data type, specified as a numerictype object. Call numerictype(s,w, f), where s is 1 for
signed and 0 for unsigned, w is the word length in bits, and f is the number of fractional bits.

If you specify [] for this argument, the object uses double data type to calculate the latency. The
result is equivalent to the fixed-point latency as long as the coefficient data type is large enough to
represent the coefficient values exactly.

Dependencies
This argument applies when the CoefficientsDataTypeis 'Same word length as input'.

isInputComplex — Complexity of input data
false (default) | true

Set this argument to true if your input data is complex. You can omit this argument if your input data
is real. When your filter has complex input data and complex coefficients there is an additional adder
at the output of the filter that adds pipeline latency.

Data Types: logical

inputVecSize — Vector size
integer from 1 to 64

Vector size, specified as an integer from 1 to 64. When you do not specify this argument, the function
assumes scalar input.
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Output Arguments

Y — Cycles of latency
integer

Cycles of latency that the filter object takes between the first valid input and the first valid output.
Each call to the object simulates one cycle. This latency assumes valid input data on every cycle.

Version History
Introduced in R2020b

See Also

Objects
dsphdl.FIRDecimator
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getLatency

Package: dsphdl

Latency of channelizer calculation

Syntax

Y = getLatency(channelizer)

Y = getLatency(channelizer,N)

Y = getLatency(channelizer,N,V)

Y = getLatency(channelizer,N,V,isInputType)
Description

Y = getlLatency(channelizer) returns the number of cycles, Y, that the object takes to
channelize an input frame. The latency depends on the input vector size and the FFT length. The
channelizer filter coefficients does not affect the latency.

Y = getLatency(channelizer,N) returns the number of cycles that an object would take to
channelize an input frame, if it had FFT length N, and scalar input. This function does not change the
properties of the channelizer.

Y = getLatency(channelizer,N,V) returns the number of cycles that an object would take to
channelize an input frame, if it had FFT length N, and vector input of size V. This function does not
change the properties of channelizer.

Y = getLatency(channelizer,N,V,isInputType) returns the number of cycles that an object
would take to channelize an input frame, if it had FFT length N, vector input of size V, and
isInputType that indicates the complexity of the input when the filter coefficients of channelizer
are complex. This function does not change the properties of channelizer.

Examples

Explore Latency of Channelizer Object

The latency of the dsphdl.Channelizer object varies with the FFT length, filter structure, vector
size, and input type. Use the getLatency function to find the latency of a particular configuration.
The latency is measured as the number of cycles between the first valid input and the first valid
output, assuming that the input is contiguous. The number of filter coefficients does not affect the
latency. Setting the output size equal to the input size reduces the latency because the samples are
not saved and reordered.

Create a dsphdl.Channelizer object with filter structure set to direct form transposed and request
the latency.

channelize = dsphdl.Channelizer('NumFrequencyBands',512, 'FilterStructure','Direct form transpost
L512 = getlLatency(channelize)

L512 = 1118
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Request hypothetical latency information about a similar object with a different number of frequency
bands (FFT length). The properties of the original object do not change.

L256 = getlLatency(channelize,256)
L256 = 592

N = channelize.NumFrequencyBands
N = 512

Request hypothetical latency information of a similar object that accepts eight-sample vector input.

L256v8 = getlLatency(channelize,256,8)

L256v8 132

Enable scaling at each stage of the FFT. The latency does not change.

channelize.Normalize = true;
L512n = getlLatency(channelize)

L512n = 1118

Request the same output size and order as the input data. The latency decreases because the object
does not need to store and reorder the data before output. The default input size is scalar.

channelize.OutputSize = 'Same as input size';
L512r = getLatency(channelize)

L512r = 1084

Check the latency of a vector input implementation where the input and output are the same size.
Specify the current value of the FFT length and a vector size of 8 samples. The latency decreases
because the object computes results in parallel when the input is a vector.

L512rv8 = getlLatency(channelize, channelize.NumFrequencyBands, 8)

L512rv8 = 218

Check the latency of a vector input implementation where the input type is complex. Specify the
current value of the FFT length and a vector size of 16 samples.

L512rv16i

getLatency(channelize, channelize.NumFrequencyBands, 16, true)

L512rv161

152

Input Arguments

channelizer — Channelizer System object
dsphdl.Channelizer

Channelizer System object that you created and configured. See dsphdl.Channelizer.

N — Number of frequency bands (FFT length)
integer power of 2 from 22 to 216

Number of frequency bands (FFT length), specified as an integer power of 2 from 22 to 216,
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V — Vector size
power of 2 from 1 to 64

Vector size, specified as a power of 2 from 1 to 64. The vector size cannot be greater than the FFT
length. When you do not specify this argument, the function assumes scalar input.

isInputType — Indicator of input data complexity
logical scalar

Indicator of input data whether it is complex or not.

Output Arguments

Y — Cycles of latency
integer

Cycles of latency that the object takes to channelize an input frame, returned as an integer. The

latency is the number of cycles between the first valid input and the first valid output, assuming the
input is contiguous. Each call to the object simulates one cycle.

Version History
Introduced in R2017a

See Also

Objects
dsphdl.Channelizer | dsphdl.ChannelSynthesizer | dsphdl.IFFT | dsphdl.FFT

2-237



2 System Objects

2-238

getLatency

Package: dsphdl

Latency of channel synthesizer calculation

Syntax

Y
Y

getLatency(channelsynthesizer)
getLatency(channelsynthesizer,N)

Description

Y = getlLatency(channelsynthesizer) returns the number of cycles, Y that the object would
take to synthesize an input frame. The filter coefficients do not affect the latency. This function does
not change the properties of the channelsynthesizer.

Y = getLatency(channelsynthesizer,N) returns the number of cycles that an object would
take to synthesize an input frame. The latency depends on the filter structure and the IFFT length (N).
The filter coefficients do not affect the latency. This function does not change the properties of the
channelsynthesizer.

Examples

Explore Latency of Channel Synthesizer Object

The latency of the dsphdl.ChannelSynthesizer object varies with the IFFT length and filter
structure.

Create a dsphdl.ChannelSynthesizer object with a direct form transposed filter structure and 16
frequency bands, and then calculate the latency.

synthesizerDT = dsphdl.ChannelSynthesizer('FilterStructure', 'Direct form transposed');
latencyDT = getLatency(synthesizerDT, 16)

latencyDT = 20

Calculate the latency information for dsphdl.ChannelSynthesizer object with a direct form
systolic filter structure and and 8 frequency bands.

synthesizerDS = dsphdl.ChannelSynthesizer('FilterStructure', 'Direct form systolic');
latencyDS = getLatency(synthesizerDS,8)

latencyDS = 21
Enable scaling at each stage of the IFFT. The latency does not change.

synthesizerDT.Normalize = true;
latencyDTn = getlLatency(synthesizerDT, 16)

latencyDTn = 20
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Input Arguments

channelsynthesizer — Channel synthesizer System object
dsphdl.ChannelSynthesizer

Channel synthesizer System object that you created and configured. See
dsphdl.ChannelSynthesizer.

N — Number of frequency bands (IFFT length)
integer power of 2 from 22 to 2°

Number of frequency bands (IFFT length), specified as an integer power of 2 from 22 to 2°.

Output Arguments

Y — Cycles of latency
integer

Cycles of latency that the object takes to synthesize the input frame, returned as an integer. The
latency is the number of cycles between the first valid input and the first valid output, assuming the
input is contiguous. Each call to the object simulates one cycle.

Version History
Introduced in R2022a

See Also

Objects
dsphdl.Channelizer | dsphdl.ChannelSynthesizer | dsphdl.IFFT | dsphdl.FFT
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getLatency

Package: dsphdl

Latency of downsampler

Syntax

Y
Y

getLatency(downsampler)
getLatency(downsampler,V)

Description

Y = getLatency(downsampler) returns the latency, Y, between the first valid input sample and
the first valid output sample, assuming contiguous input samples. The latency depends on the
SampleOffset property and length of the input data to the downsampler.

Y = getLatency(downsampler,V) returns the latency, Y, between the first valid input sample and
the first valid output sample, assuming contiguous input samples and a vector input of size V.

Examples

Explore Latency of Downsampler Object

The latency of the dsphdl.Downsampler System object™ varies according the downsample factor
and the input vector size. Use the getLatency function to find the latency of an downsampler
configuration. The latency is the number of cycles between the first valid input and the first valid
output, assuming the input is continuously valid.

Create a dsphdl.Downsampler System object and get the latency. The default System object has an
downsampling factor of 2 and a sample offset of 0.

downsampler = dsphdl.Downsampler

downsampler =
dsphdl.Downsampler with properties:

DownsampleFactor: 2
SampleOffset: 0

Show all properties
vV =1;

downsampler.SampleOffset = 1;
Ydefault = getlLatency(downsampler,V)

Ydefault = 3

Modify the object and check the resulting change in latency.
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downsampler.DownsampleFactor = 8;
Y1 = getLatency(downsampler)

Y1 =1

Change the vector input size to 2. Check the resulting change in latency.
V =4,

downsampler.DownsampleFactor = 2;

Vec = getlLatency(downsampler,V)

Vec = 2

Input Arguments

downsampler — Downsampler
dsphdl.Downsampler System object

Downsampler, specified as a dsphdl.Downsampler System object.

V — Vector size
integer in the range [1, 64]

Vector size, specified as an integer in the range [1, 64]. DownsampleFactor property of
Downsampler must be an integer multiple of the input frame size. Use this argument to get the
latency of an Downsampler object with V input data samples. When you do not specify this argument,
the function assumes that the input data is scalar.

Output Arguments

Y — Cycles of latency
non-negative integer

Cycles of latency that the dsphdl.Downsampler object takes between the first valid input and the
first valid output, returned as a nonnegative integer. Each call to the object simulates one cycle. The
function calculates this latency under the assumption that the input data is valid on every cycle.

Version History
Introduced in R2022b

See Also

Objects
dsphdl.Downsampler
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getLatency

Package: dsphdl

Latency of upsampler

Syntax

Y
Y

getLatency(upsampler)
getLatency(upsampler,V)

Description

Y = getlLatency(upsampler) returns the latency, Y, between the first valid input sample and the
first valid output sample, assuming contiguous input samples. The latency depends on the length of
the input data to upsampler.

Y = getLatency(upsampler,V) returns the latency, Y, between the first valid input sample and
the first valid output sample, assuming contiguous input samples and a vector input of size V.

Examples

Explore Latency of Upsampler Object

The latency of the dsphdl.Upsampler System object™ varies according to the upsample factor and
the input vector size. Use the getLatency function to find the latency of an upsampler configuration.
The latency is the number of cycles between the first valid input and the first valid output, assuming
the input is continuously valid.

Create a dsphdl.Upsampler System object and get the latency. The default System object has an
upsampling factor of 3 and a sample offset set of 0.

upsampler = dsphdl.Upsampler

upsampler =
dsphdl.Upsampler with properties:

UpsampleFactor: 3
SampleOffset: 0
NumCycles: 1
Show all properties
vV =1;
Ydefault = getLatency(upsampler,V)

Ydefault 3

Modify the object and check the resulting change in latency.
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upsampler.UpsampleFactor = 8;
Y1 = getLatency(upsampler)

Y1 =2

Change the vector input size to 2. Check the resulting change in latency.
vV = 2;

upsampler.UpsampleFactor = 10;

LVec = getLatency(upsampler,V)

LVec = 2

Input Arguments

upsampler — Upsampler
dsphdl.Upsampler System object

Upsampler, specified as a dsphdl.Upsampler System object.

V — Vector size
integer in the range [1, 64]

Vector size, specified as an integer in the range [1, 64]. UpsampleFactor property of upsampler
must be an integer multiple of the input frame size. Use this argument to get the latency of an
upsampler object with V input data samples. When you do not specify this argument, the function
assumes that the input data is scalar.

Output Arguments

Y — Cycles of latency
nonnegative integer

Cycles of latency that the dsphdl.Upsampler object takes between the first valid input and the first
valid output, returned as a nonnegative integer. Each call to the object simulates one cycle. This
latency assumes valid input data on every cycle.

Version History
Introduced in R2022b

See Also

Objects
dsphdl.Upsampler
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getLatency

Package: dsphdl
Latency of LMS Filter

Syntax
Y = getlLatency(lmsfilter)
Y = getLatency(lmsfilter,inputData,V)

Description

Y = getLatency(lmsfilter) returns the latency, Y, that the object takes to give LMS outputs.
The latency depends on the input vector size and the input complexity. The LMS filter length does not
affect the latency.

Y = getLatency(lmsfilter,inputData,V) returns the latency, Y, that the object takes to give
LMS outputs if it had input type inputType which value indicates input real or complex and vector
size of input V. This function does not change the properties of the lmsfilter.

Examples

Explore Latency of LMS Filter Object

The latency of the dsphdl.LMSFilter System object™ varies with the input size and filter length.
Use the getLatency function to find the latency of an LMS Filter for a particular configuration. The
latency is measured as the number of cycles between the first valid input and the first valid output,
assuming that the input is contiguous.

Create dsphdl.LMSFilter System object and calculate latency.

Ilmsfilter

dsphdl.LMSFilter

Imsfilter =
dsphdl.LMSFilter with properties:

FilterLength: 32
StepSizeSource: 'Property’
StepSize: 0.0100
InitialConditions: ©
AdaptInputPort: false
WeightsOutputPort: true
ErrorOutputPort: false

Show all properties

Calculate latency for the object with a filter length 64.

Ilmsfilter
latencyDT

dsphdl.LMSFilter('FilterLength',64);
getLatency(lmsfilter)
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latencyDT = 13

Calculate latency for the object with a filter length 75. The latency does not change.

Imsfilter = dsphdl.LMSFilter('FilterLength',75);
latencyDT = getlLatency(lmsfilter)
latencyDT = 13

Calculate latency when the input is complex.
latencyDT = getlLatency(lmsfilter,complex(0))
latencyDT = 15

Calculate latency when input is real with vector size 4.
latencyDT = getLatency(lmsfilter,real(0),4)

18

latencyDT

Input Arguments

lmsfilter — LMS Filter System object
dsphdl.LMSFilter

LMS Filter System object that you created and configured. See dsphdl.LMSFilter.

inputData — Input data
real or complex

Input data, specified as a real or complex value.

V — Vector size
range 2 to 64

Vector size, specified in the range [2, 64] and it must be less than the filter length. Use this argument

to request the latency of an object similar to hdlobj, but with V-sample vector input. When you do
not specify this argument, the function assumes scalar input.

Output Arguments

Y — Cycles of latency
integer

Cycles of latency that the object takes to filter the input, returned as an integer. The latency is the

number of cycles between the first valid input and the first valid output, assuming the input is
contiguous. Each call to the object simulates one cycle.

Version History
Introduced in R2023a

2-245



2 System Objects

2-246

See Also

Blocks
LMS Filter

Objects
dsphdl.LMSFilter
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